Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility description

Descriptive properties for a basic group of inorganic compounds are compiled in Section 3, which has undergone a small increase in the number of entries. Many entries under the column Solubility supply the reader with precise quantities dissolved in a stated solvent and at a given temperature. [Pg.1283]

Description of Method. The water-soluble vitamins Bi (thiamine hydrochloride), B2 (riboflavin), B3 (niacinamide), and Be (pyridoxine hydrochloride) may be determined by CZE using a pH 9 sodium tetraborate/sodlum dIhydrogen phosphate buffer or by MEKC using the same buffer with the addition of sodium dodecyl-sulfate. Detection Is by UV absorption at 200 nm. An Internal standard of o-ethoxybenzamide Is used to standardize the method. [Pg.607]

Computerized optimization using the three-parameter description of solvent interaction can facihtate the solvent blend formulation process because numerous possibihties can be examined quickly and easily and other properties can also be considered. This approach is based on the premise that solvent blends with the same solvency and other properties have the same performance characteristics. Eor many solutes, the lowest cost-effective solvent blends have solvency that is at the border between adequate and inadequate solvency. In practice, this usually means that a solvent blend should contain the maximum amount of hydrocarbon the solute can tolerate while still remaining soluble. [Pg.264]

Methima ole. This compound is a white to pale buff crystalline powder with a faint characteristic odor. It is soluble in water, ethanol, and chloroform (1 g/5 mL) and only slightly soluble in other organic solvents. A detailed chemical, analytical, spectral, and chromatographic description is available (44). It is assayed titrimetrically with NaOH (54). [Pg.54]

Analysis. Specifications and tests for soluble CN have been adopted by ASTM and are described (48,73—75). Brief descriptions of the most important tests are given here. [Pg.268]

Process Description Microfiltration (MF) separates particles from true solutions, be they liquid or gas phase. Alone among the membrane processes, microfiltration may be accomplished without the use of a membrane. The usual materi s retained by a microfiltra-tion membrane range in size from several [Lm down to 0.2 [Lm. At the low end of this spectrum, very large soluble macromolecules are retained by a microfilter. Bacteria and other microorganisms are a particularly important class of particles retained by MF membranes. Among membrane processes, dead-end filtration is uniquely common to MF, but cross-flow configurations are often used. [Pg.2043]

Process Description Gas-separation membranes separate gases from other gases. Some gas filters, which remove hquids or sohds from gases, are microfiltration membranes. Gas membranes generally work because individual gases differ in their solubility and diffusivity through nonporous polymers. A few membranes operate by sieving, Knudsen flow, or chemical complexation. [Pg.2047]

General description. Porosity refers to cavities formed within the weld metal during the solidification process. Such cavities may form due to decreased solubility of a gas as the molten weld metal cools or due to gas-producing chemical reactions within the weld metal itself. At times, cavities can form a continuous channel through the weld metal (worm holes, piping), resulting in leaks (Case History 15.3). [Pg.337]

Technology Description To achieve precipitation, acid or base is added to a solution to adjust the pH to a point where the constituents to be removed have their lowest solubility. Chemical precipitation facilitates the removal of dissolved metals from aqueous wastes. Metals may be precipitated from solutions as hydroxides, sulfides, carbonates, or other soluble salts. A comparison of precipitation reagents is presented in Table 7. Solid separation is effected by standard flocculation/ coagulation techniques. [Pg.145]

Technology Description Hydrolysis is the process of breaking a bond in a molecule (which is ordinarily not water-soluble) so that it will go into ionic solution with water. Hydrolysis can be achieved by the addition of chemicals (e.g., acid hydrolysis), by irradiation (e.g., photolysis) or by biological action (e.g., enzymatic bond cleavage). The cloven molecule can then be further treated by other means to reduce toxicity. [Pg.148]

HaO). Quinine salicylate, 2[B. CgH4(OH)(COOH)]. HaO, forms colourless needles, m.p. 187° (dec.), which slowly become pink in air. It is soluble in water (1 in 77 at 25°), alcohol (1 in 11 at 25°), or chloroform (1 in 37 at 25°). The foregoing are the most important quinine salts used in medicine, but many other salts have been used, e.g., the tannate, formate, valerate, ethylcarbonate, lactate, cacodylate, etc., as well as double salts such as quinine bismuth iodide. Descriptions of many of these salts will be found in the British Pharmaceutical Codex for 1934. [Pg.423]

We will return to the cavity model in Section 8.3, giving a description in terms of the so-called solubility parameter. [Pg.397]

The practical development of plant sterol drugs as cholesterol-lowering agents will depend both on structural features of the sterols themselves and on the form of the administered agent. For example, the unsaturated sterol sitosterol is poorly absorbed in the human intestine, whereas sitostanol, the saturated analog, is almost totally unabsorbable. In addition, there is evidence that plant sterols administered in a soluble, micellar form (see page 261 for a description of micelles) are more effective in blocking cholesterol absorption than plant sterols administered in a solid, crystalline form. [Pg.256]

The underlying physical laws necessary for the mathematical description of a large part of physics and the whole of chemistry are thus completely known, and the only difficulty is that the exact application of these laws leads to equations much too difficult to be soluble. [Pg.2]

The coupling of supercritical fluid extraction (SEE) with gas chromatography (SEE-GC) provides an excellent example of the application of multidimensional chromatography principles to a sample preparation method. In SEE, the analytical matrix is packed into an extraction vessel and a supercritical fluid, usually carbon dioxide, is passed through it. The analyte matrix may be viewed as the stationary phase, while the supercritical fluid can be viewed as the mobile phase. In order to obtain an effective extraction, the solubility of the analyte in the supercritical fluid mobile phase must be considered, along with its affinity to the matrix stationary phase. The effluent from the extraction is then collected and transferred to a gas chromatograph. In his comprehensive text, Taylor provides an excellent description of the principles and applications of SEE (44), while Pawliszyn presents a description of the supercritical fluid as the mobile phase in his development of a kinetic model for the extraction process (45). [Pg.427]

Description of samples tested, specific test methods used, exposure medium notes, solubility parameters, and other important details are provided. Emphasis is on providing all relevant information so the most informed conclusions and decisions can be made by the user. Over 60,000 individual entries (specific tests) are covered in the database. Classes of materials covered include thermosets, thermosetting elastomers, thermoplastics, and thermoplastic elastomers. Approximately 700 different trade name and grade combinations representing over 130 families of materials are included. Over 3300 exposure environments are represented. [Pg.596]

However, dendrimeric and hyperbranched polyesters are more soluble than the linear ones (respectively 1.05, 0.70, and 0.02 g/mL in acetone). The solution behavior has been investigated, and in the case of aromatic hyperbranched polyesters,84 a very low a-value of the Mark-Houvink-Sakurada equation 0/ = KMa) and low intrinsic viscosity were observed. Frechet presented a description of the intrinsic viscosity as a function of the molar mass85 for different architectures The hyperbranched macromolecules show a nonlinear variation for low molecular weight and a bell-shaped curve is observed in the case of dendrimers (Fig. 5.18). [Pg.286]

Since that time much work has been done in the area of siloxane-imide systems, especially in industrial laboratories. Therefore most of the available information is enclosed in the patent literature 168 175) and, unfortunately, description of the actual polymerization chemistry is very vague. A great majority of these applications utilized disiloxanes in high concentrations in order to obtain soluble polymers with improved toughness. [Pg.33]

Thus we have Example 5 from Table 4.1. Equation 4 gives a better description of the overall reaction, but equation 5 highlights the essential chemical process, and can also stand for the parallel reactions where sodium chloride is replaced by potassium chloride, or at r other soluble chloride. The chemistiy student is expected to appreciate how both equations 4 and 5 can represent the same chemical processes. [Pg.95]

This chapter describes several Important applications of aqueous equilibria. We begin with a discussion of buffer chemistry, followed by a description of acid and base titration reactions. Then we change our focus to examine the solubility equilibria of inorganic salts. The chapter concludes with a discussion of the equilibria of complex Ions. [Pg.1273]

Section 3.2 begins with pfCj definitions and a brief description of the state-of-the-art pfCj measurement methods, stressing the needed accuracy, especially with molecules which possess very low aqueous solubility. In a prachcal way, the ioniza-hon constant is treated as a property of the molecule, usually defined at 25 °C in a nonbuffered medium of 0.15 M potassium (or sodium) chloride aqueous... [Pg.57]


See other pages where Solubility description is mentioned: [Pg.2814]    [Pg.17]    [Pg.1283]    [Pg.1286]    [Pg.489]    [Pg.810]    [Pg.552]    [Pg.196]    [Pg.1653]    [Pg.2038]    [Pg.52]    [Pg.57]    [Pg.162]    [Pg.219]    [Pg.506]    [Pg.85]    [Pg.79]    [Pg.296]    [Pg.468]    [Pg.110]    [Pg.104]    [Pg.1311]    [Pg.88]    [Pg.162]    [Pg.128]    [Pg.305]    [Pg.306]    [Pg.307]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Descriptive Terms for Solubility

Organics, solubility description

Solubility product description

Water solubility description

© 2024 chempedia.info