Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cholesterol absorption

VanHeek, M., France, C. F., Compton, D. S., McLeon, R. L., Yumibe, N. P., et al. (1997) In vivo metabolism-based discovery of a potent absorption cholesterol inhibitor, SCH58235, in the rat, and rhesus monkey through the identification of the active metabolites of SCH48461. J. Pharmacol. Exp. Therap. 283, 157-163. [Pg.178]

The relative importance of each of these contributions to pool C is likely to be different in epithelial cells located at different points along the villus-crypt axis. The fact that cholesterol derived from synthesis and from the uptake of LDL is critically important for membrane formation and differentiation is suggested by the finding that 70-80% of total mucosal sterol synthetic activity and LDL transport activity are localized to the immature cells of the lower villus and crypt regions in both the proximal and distal intestine. In the mature absorptive cells of the upper villus in the jejunum, where most sterol absorption takes place, the rate of cholesterol synthesis appears to be suppressed. In the absence of fat absorption, cholesterol newly synthesized in these cells apparently is sloughed into the lumen and not reabsorbed. However, with active triglyceride absorption cholesterol synthesis in these cells is increased and a portion of this sterol appears in the intestinal lymph. Only under this condition does pool B apparently supply sterol for lipoprotein formation. [Pg.146]

Within the body there are adaptive mechanisms to maintain cholesterol homeostasis in spite of an excess of cholesterol in the diet. The three main areas of control are cholesterol absorption, cholesterol synthesis and cholesterol excretion. The efficiency of cholesterol absorption is reduced by a high dietary intake of cholesterol. The individual variability in the response of plasma cholesterol to dietary cholesterol ingestion may be explained by individual differences in absorption efficiency (McNamara et... [Pg.21]

During the process of absorption, cholesterol dissolved in the lipid core of micelles is transported from the lumen of the small intestine across the intestinal wall and into the lymph. Because the solubility of cholesterol in aqueous systems is low, its absorption depends on the formation of detergent structures (mixed micelles) in the small intestine. These are composed mainly of bile salts, phospholipids, digestion products of fats such as fatty acids and monoacylglycerols, cholesterol (of which 90% is in free form), and fat-soluble micronutrients (Figure 6). [Pg.193]

Bde salts, cholesterol, phosphoHpids, and other minor components are secreted by the Hver. Bile salts serve three significant physiological functions. The hydrophilic carboxylate group, which is attached via an alkyl chain to the hydrophobic steroid skeleton, allows the bile salts to form water-soluble micelles with cholesterol and phosphoHpids in the bile. These micelles assist in the solvation of cholesterol. By solvating cholesterol, bile salts contribute to the homeostatic regulation of the amount of cholesterol in the whole body. Bile salts are also necessary for the intestinal absorption of dietary fats and fat-soluble vitamins (24—26). [Pg.415]

Saponins. Although the hypocholesterolemic activity of saponins has been known since the 1950s, thek low potency and difficult purification sparked Htde interest in natural saponins as hypolipidemic agents. Synthetic steroids (292, 293) that are structurally related to saponins have been shown to lower plasma cholesterol in a variety of different species (252). Steroid (292) is designated CP-88,818 [99759-19-0]. The hypocholesterolemic agent CP-148,623 [150332-35-7] (293) is not absorbed into the systemic ckculation and does not inhibit enzymes involved in cholesterol synthesis, release, or uptake. Rather, (293) specifically inhibits cholesterol absorption into the intestinal mucosa (253). As of late 1996, CP-148,623 is in clinical trials as an agent that lowers blood concentrations of cholesterol (254). [Pg.447]

Permeation enhancers are used to improve absorption through the gastric mucosa. Eor example, oral dehvery of insulin (mol wt = 6000) has been reported from a water-in-oH- emulsion containing lecithin, nonesterified fatty acids, cholesterol [57-88-5], and the protease inhibitor aprotinin [9087-70-1] (23). [Pg.141]

In an attempt to conserve sodium, the kidney secretes renin increased plasma renin activity increases the release of aldosterone, which regulates the absorption of potassium and leads to kafluresis and hypokalemia. Hypokalemia is responsible in part for decreased glucose intolerance (82). Hyponatremia, postural hypotension, and pre-renal azotemia are considered of tittle consequence. Hypemricemia and hypercalcemia are not unusual, but are not considered harmful. However, hypokalemia, progressive decreased glucose tolerance, and increased semm cholesterol [57-88-5] levels are considered... [Pg.211]

Fig. 1 Absorption scan of a chromatogram track with 250 ng cholesterol and 500 Dg coprostanol per chromatogram zone. Cholesterol (1), coprostanol (2). Fig. 1 Absorption scan of a chromatogram track with 250 ng cholesterol and 500 Dg coprostanol per chromatogram zone. Cholesterol (1), coprostanol (2).
The practical development of plant sterol drugs as cholesterol-lowering agents will depend both on structural features of the sterols themselves and on the form of the administered agent. For example, the unsaturated sterol sitosterol is poorly absorbed in the human intestine, whereas sitostanol, the saturated analog, is almost totally unabsorbable. In addition, there is evidence that plant sterols administered in a soluble, micellar form (see page 261 for a description of micelles) are more effective in blocking cholesterol absorption than plant sterols administered in a solid, crystalline form. [Pg.256]

Anion exchange resins are basic polymers with a high affinity for anions. Because different anions compete for binding to them, they can be used to sequester anions. Clinically used anion exchange resins such as cholestyramine are used to sequester bile acids in the intestine, thereby preventing their reabsorption. As a consequence, the absorption of exogenous cholesterol is decreased. The accompanying increase in low density lipoprotein (LDL)-receptors leads to the removal of LDL from the blood and, thereby, to a reduction of LDL cholesterol. This effect underlies the use of cholestyramine in the treatment of hyperlipidaemia. [Pg.90]

The cis P-lactams 57 are shown to act as cholesterol absorption inhibitors <96BMCL1947> and 58, an analogue of the dipeptide Phe-Gly methyl ester, is a protease inhibitor <96BMCL983>. A straightforward synthesis of proclavaminic acid 59, a biosynthetic precursor of clavulanic acid, is reported <96TA2277>. [Pg.72]

Four major groups of lipoproteins are recognized Chylomicrons transport lipids resulting from digestion and absorption. Very low density lipoproteins (VLDL) transport triacylglycerol from the liver. Low-density lipoproteins (LDL) deliver cholesterol to the tissues, and high-density lipoproteins (HDL) remove cholesterol from the tissues in the process known as reverse cholesterol transport. [Pg.217]

Although products of fat digestion, including cholesterol, are absorbed in the first 100 cm of small intestine, the primary and secondary bile acids are absorbed almost exclusively in the ileum, and 98—99% are returned to the liver via the portal circulation. This is known as the enterohepatic circulation (Figure 26—6). However, lithocholic acid, because of its insolubility, is not reabsorbed to any significant extent. Only a small fraction of the bile salts escapes absorption and is therefore eliminated in the feces. Nonetheless, this represents a major pathway for the elimination of cholesterol. Each day the small pool of bile acids (about 3-5 g) is cycled through the intestine six to ten times and an amount of bile acid equivalent to that lost in the feces is synthesized from cholesterol, so that a pool of bile acids of constant size is maintained. This is accomplished by a system of feedback controls. [Pg.227]

The major lipids in the diet are triacylglycerols and, to a lesser extent, phospholipids. These are hydrophobic molecules and must be hydrolyzed and emulsified to very small droplets (micelles) before they can be absorbed. The fat-soluble vitamins— A, D, E, and K— and a variety of other lipids (including cholesterol) are absorbed dissolved in the lipid micelles. Absorption of the fat-soluble vitamins is impaired on a very low fat diet. [Pg.475]

Irrespective of the physical form of the carotenoid in the plant tissue it needs to be dissolved directly into the bulk lipid phase (emulsion) and then into the mixed micelles formed from the emulsion droplets by the action of lipases and bile. Alternatively it can dissolve directly into the mixed micelles. The micelles then diffuse through the unstirred water layer covering the brush border of the enterocytes and dissociate, and the components are then absorbed. Although lipid absorption at this point is essentially complete, bile salts and sterols (cholesterol) may not be fully absorbed and are not wholly recovered more distally, some being lost into the large intestine. It is not known whether carotenoids incorporated into mixed micelles are fully or only partially absorbed. [Pg.118]

Historically, the absorption of lipid-soluble nutrients has been considered to be carrier-independent, with solutes diffusing into enterocytes down concentration gradients. This is true for some lipid-soluble components of plants (e.g. the hydroxytyrosol in olive oil Manna et al., 2000). However, transporters have been reported for several lipid-soluble nutrients. For example, absorption of cholesterol is partly dependent on a carrier-mediated process that is inhibited by tea polyphenols (Dawson and Rudel, 1999) and other phytochemicals (Park et al., 2002). A portion of the decreased absorption caused by tea polyphenols may be due to precipitation of the cholesterol associated with micelles (Ikeda et al., 1992). Alternatively, plant stanols and other phytochemicals may compete with cholesterol for transporter sites (Plat and Mensink, 2002). It is likely that transporters for other lipid-soluble nutrients are also affected by phytochemicals, although this has not been adequately investigated. [Pg.167]

DAWSON P A, rudel l l (1999) Intestinal cholesterol absorption. Curr Opin Lipidol. 10 315-20. [Pg.177]

IKEDA I, IMASATO Y, SASAKI E, NAKAYAMA M, NAGAO H, TAKEO T, YAYABE F, SUGANO M (1992) Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim Biophys Acta. 1127 141-6. [Pg.179]

PARK Y B, JEON s M, BYUN s J, KIM H s, CHOI M s (2002) Absorption of intestinal free cholesterol is lowered by snpplementation of Areca catechu L. extract in rats. Life Sci. 70 1849-59. [Pg.182]

PLAT J, MENSINK R p (2002) Increased intestinal ABCAl expression contributes to the decrease in cholesterol absorption after plant stanolconsiunption. 7vl5 5 J. 16 1248-53. [Pg.182]

RONG N, AUSMAN L M, NICOLOSI R J (1997) Gamma-oryzanol decreases cholesterol absorption and aortic streaks in hamsters. Lipids 32(3) 303-9. [Pg.374]

SEETHARAMIAH G s, CHANDRASEKHARA N (1990) Effect of gamma oryzanol on cholesterol absorption and biliary and fecal bile acids in rats. Ind J Med Res, 92 471-5. [Pg.375]


See other pages where Cholesterol absorption is mentioned: [Pg.62]    [Pg.167]    [Pg.300]    [Pg.62]    [Pg.167]    [Pg.300]    [Pg.370]    [Pg.353]    [Pg.117]    [Pg.131]    [Pg.70]    [Pg.113]    [Pg.668]    [Pg.256]    [Pg.586]    [Pg.256]    [Pg.448]    [Pg.699]    [Pg.944]    [Pg.1160]    [Pg.100]    [Pg.301]    [Pg.119]    [Pg.205]    [Pg.211]    [Pg.229]    [Pg.287]   
See also in sourсe #XX -- [ Pg.451 ]




SEARCH



© 2024 chempedia.info