Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid ablation

Laser desorption to produce ions for mass spectrometric analysis is discussed in Chapter 2. As heating devices, lasers are convenient when much energy is needed in a very small space. A typical laser power is 10 ° W/cm. When applied to a solid, the power of a typical laser beam — a few tens of micrometers in diameter — can lead to very strong localized heating that is sufficient to vaporize the solid (ablation). Some of the factors controlling heating with lasers and laser ablation are covered in Figure 17.2. [Pg.111]

Whereas laser ablation of graphite yields thermalized C2 molecules with a rotational-vibrational energy distribution following a Boltzmann distribution at the temperature T of the solid, ablation of electrical isolators, such as AlO, produces AlO molecules with a large kinetic energy of 1 eV, but a rotational temperature of only 500 K [1496]. [Pg.623]

High-powered lasers have proved to be useful sources for the direct ablation of solids. In atomic emission spectrometry, ruby and Nd YAG lasers have been used since the 1970s for solids ablation. When laser radiation interacts with a solid, a laser plume is formed. This is a dense plasma containing both atomized material and small solid particles that have evaporated and or have been ejected from the sample due to atom and ion bombardment. The processes occurring and the figures of merit in terms of ablation rate, crater diameter (around 10 pm), and depth... [Pg.279]

Fundamentally, introduction of a gaseous sample is the easiest option for ICP/MS because all of the sample can be passed efficiently along the inlet tube and into the center of the flame. Unfortunately, gases are mainly confined to low-molecular-mass compounds, and many of the samples that need to be examined cannot be vaporized easily. Nevertheless, there are some key analyses that are carried out in this fashion the major one i.s the generation of volatile hydrides. Other methods for volatiles are discussed below. An important method of analysis uses lasers to vaporize nonvolatile samples such as bone or ceramics. With a laser, ablated (vaporized) sample material is swept into the plasma flame before it can condense out again. Similarly, electrically heated filaments or ovens are also used to volatilize solids, the vapor of which is then swept by argon makeup gas into the plasma torch. However, for convenience, the methods of introducing solid samples are discussed fully in Part C (Chapter 17). [Pg.98]

These data are typical of lasers and the sorts of samples examined. The actual numbers are not crucial, but they show how the stated energy in a laser can be interpreted as resultant heating in a solid sample. The resulting calculated temperature reached by the sample is certainly too large because of several factors, such as conductivity in the sample, much less than I00% efficiency in converting absorbed photon energy into kinetic energy of ablation, and much less than 100% efficiency in the actual numbers of photons absorbed by the sample from the beam. If the overall efficiency is 1-2%, the ablation temperature becomes about 4000 K. [Pg.111]

Suffice it to say at this stage that the surfaces of most solids subjected to such laser heating will be heated rapidly to very high temperatures and will vaporize as a mix of gas, molten droplets, and small particulate matter. For ICP/MS, it is then only necessary to sweep the ablated aerosol into the plasma flame using a flow of argon gas this is the basis of an ablation cell. It is usual to include a TV monitor and small camera to view the sample and to help direct the laser beam to where it is needed on the surface of the sample. [Pg.112]

Solid samples can be analyzed using a plasma torch by first ablating the solid to form an aerosol, which is swept into the plasma flame. The major ablation devices are lasers, arcs and sparks, electrothermal heating, and direct insertion into the flame. [Pg.116]

Until about the 1990s, visible light played little intrinsic part in the development of mainstream mass spectrometry for analysis, but, more recently, lasers have become very important as ionization and ablation sources, particularly for polar organic substances (matrix-assisted laser desorption ionization, MALDI) and intractable solids (isotope analysis), respectively. [Pg.119]

Modern commercial lasers can produce intense beams of monochromatic, coherent radiation. The whole of the UV/visible/IR spectral range is accessible by suitable choice of laser. In mass spectrometry, this light can be used to cause ablation, direct ionization, and indirect ionization (MALDI). Ablation (often together with a secondary ionization mode) and MALDI are particularly important for examining complex, intractable solids and large polar biomolecules, respectively. [Pg.136]

Some solid materials are very intractable to analysis by standard methods and cannot be easily vaporized or dissolved in common solvents. Glass, bone, dried paint, and archaeological samples are common examples. These materials would now be examined by laser ablation, a technique that produces an aerosol of particulate matter. The laser can be used in its defocused mode for surface profiling or in its focused mode for depth profiling. Interestingly, lasers can be used to vaporize even thermally labile materials through use of the matrix-assisted laser desorption ionization (MALDI) method variant. [Pg.280]

For solids, there is now a very wide range of inlet and ionization opportunities, so most types of solids can be examined, either neat or in solution. However, the inlet/ionization methods are often not simply interchangeable, even if they use the same mass analyzer. Thus a direct-insertion probe will normally be used with El or Cl (and desorption chemical ionization, DCl) methods of ionization. An LC is used with ES or APCI for solutions, and nebulizers can be used with plasma torches for other solutions. MALDI or laser ablation are used for direct analysis of solids. [Pg.280]

The previous discussion has centered on how to obtain as much molecular mass and chemical structure information as possible from a given sample. However, there are many uses of mass spectrometry where precise isotope ratios are needed and total molecular mass information is unimportant. For accurate measurement of isotope ratio, the sample can be vaporized and then directed into a plasma torch. The sample can be a gas or a solution that is vaporized to form an aerosol, or it can be a solid that is vaporized to an aerosol by laser ablation. Whatever method is used to vaporize the sample, it is then swept into the flame of a plasma torch. Operating at temperatures of about 5000 K and containing large numbers of gas ions and electrons, the plasma completely fragments all substances into ionized atoms within a few milliseconds. The ionized atoms are then passed into a mass analyzer for measurement of their atomic mass and abundance of isotopes. Even intractable substances such as glass, ceramics, rock, and bone can be examined directly by this technique. [Pg.284]

The solid to be examined must be vaporized in some way. This vaporization can be done by using the heat of the plasma flame or, more usually, the solid is ablated separately and the resulting aerosol is mixed with argon gas and swept into the center of the flame. [Pg.398]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

Considerably complicated realizes ablation of water from Zn Co j P O -H O. Heating of it to 603 K is accompanied with practically full destaiction of diphosphate stmcture. In composition of X-ray amorphous solid phase take place the processes of anion condensation. On their realization indicates formation of triphosphate with lineai anion stmcture (5,6 mas.% in count on P,0 ) in composition of burning products. [Pg.91]

Laser based mass spectrometric methods, such as laser ionization (LIMS) and laser ablation in combination with inductively coupled plasma mass spectrometry (LA-ICP-MS) are powerful analytical techniques for survey analysis of solid substances. To realize the analytical performances methods for the direct trace analysis of synthetic and natural crystals modification of a traditional analytical technique was necessary and suitable standard reference materials (SRM) were required. Recent developments allowed extending the range of analytical applications of LIMS and LA-ICP-MS will be presented and discussed. For example ... [Pg.425]

Liquids, directly solids, following dissolution solids, surfaces, and thin films with special methods (e.g., laser ablation)... [Pg.48]

Direct sampling of solids may be carried out using laser ablation. In this technique a high-power laser, usually a pulsed Nd-YAG laser, is used to vaporize the solid, which is then swept into the plasma for ionization. Besides not requiring dissolution or other chemistry to be performed on the sample, laser ablation ICPMS (LA-ICPMS) allows spatial resolution of 20-50 pm. Depth resolution is 1-10 pm per pulse. This aspect gives LA-ICPMS unique dit nostic capabilities for geologic samples, surface features, and other inhomogeneous samples. In addition minimal, or no, sample preparation is required. [Pg.629]

Approximately 70 different elements are routinely determined using ICP-OES. Detection limits are typically in the sub-part-per-billion (sub-ppb) to 0.1 part-per-million (ppm) range. ICP-OES is most commonly used for bulk analysis of liquid samples or solids dissolved in liquids. Special sample introduction techniques, such as spark discharge or laser ablation, allow the analysis of surfaces or thin films. Each element emits a characteristic spectrum in the ultraviolet and visible region. The light intensity at one of the characteristic wavelengths is proportional to the concentration of that element in the sample. [Pg.633]

So far powerful lasers with picosecond to nanosecond pulse duration have usually been used for the ablation of material from a solid sample. The very first results from application of the lasers with femtosecond pulse duration were published only quite recently. The ablation thresholds vary within a pretty wide interval of laser fluences of 0.1-10 J cm , depending on the type of a sample, the wavelength of the laser, and the pulse duration. Different advanced laser systems have been tested for LA ... [Pg.232]

Different analytical techniques are used for detection of the elemental composition of the solid samples. The simplest is direct detection of emission from the plasma of the ablated material formed above a sample surface. This technique is generally referred to as LIBS or LIPS (laser induced breakdown/plasma spectroscopy). Strong continuous background radiation from the hot plasma plume does not enable detection of atomic and ionic lines of specific elements during the first few hundred nanoseconds of plasma evolution. One can achieve a reasonable signal-to-noise ra-... [Pg.233]

The sensitivity, accuracy, and precision of solid-sample analysis have been greatly improved by coupling LA with ICP-OES-MS. The ablated species are transported by means of a carrier gas (usually argon) into the plasma torch. Further atomization, excitation, and ionization of the ablated species in the stationary hot plasma result in a dramatic increase in the sensitivity of the detection of radiation (LA-ICP-OES) or of the detection of ions (LA-ICP-MS). [Pg.234]


See other pages where Solid ablation is mentioned: [Pg.251]    [Pg.218]    [Pg.224]    [Pg.550]    [Pg.251]    [Pg.703]    [Pg.251]    [Pg.218]    [Pg.224]    [Pg.550]    [Pg.251]    [Pg.703]    [Pg.1331]    [Pg.2066]    [Pg.112]    [Pg.135]    [Pg.136]    [Pg.136]    [Pg.26]    [Pg.388]    [Pg.79]    [Pg.297]    [Pg.531]    [Pg.622]    [Pg.639]    [Pg.639]    [Pg.231]    [Pg.234]   
See also in sourсe #XX -- [ Pg.251 ]

See also in sourсe #XX -- [ Pg.251 ]




SEARCH



Ablate

Ablation

Ablator

Ablators

Solid sample analysis using laser ablation

© 2024 chempedia.info