Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids solidification

The very fact that the vapor phase of many substances can condense to form a liquid is a consequence of the existence of attractive van der Waals forces between atoms or molecules. An attractive intermolecular force is not needed for a gas to condense into a solid solidification can occur purely as a result of excluded-volume interactions among the molecules at sufficiently large densities. The pressure in a fluid, the cohesion between materials, and the existence of surface energy or surface tension all result, partially or wholly, from van der Waals forces. [Pg.463]

A vast number of engineering materials are used in solid form, but during processing may be found in vapor or liquid phases. The vapor— solid (condensation) and liquid—>solid (solidification) transformations take place at a distinct interface whose motion determines the rate of formation of the solid. In this chapter we consider some of the factors that influence the kinetics of vapor/solid and liquid/solid interface motion. Because vapor and liquid phases lack long-range structural order, the primary structural features that may influence the motion of these interfaces are those at the solid surface. [Pg.285]

Solidification refers to techniques that encapsulate the waste, forming a solid material, and does not necessarily involve a chemical interaction between the contaminants and the solidifying additives. The product of solidification, often known as the waste form, may be a monolithic block, a clay-like material, a granular particulate, or some other physical form commonly considered solid. Solidification as applied to fine waste particles, typically 2 mm or less, is termed microencapsulation and that which applies to a large block or container of wastes is termed macroencapsulation [29]. [Pg.167]

Solid Solidification/ Stabilization Solubility (in H2O, organic) Solvents, oils, etc. Size distribution Constituent analysis... [Pg.122]

Properties Light-yellow, fused solid. Solidification point 37C, d 1.197 (70C). Soluble in acetone, benzene, kerosene, and nitrobenzene. Combustible. [Pg.465]

Stresses on the liquid-solid structure are approximately proportional to the difference between the temperature at which the solder first begins to support load during cooling (about 90% solid) and the temperature at which the solder is 100% solid. Solidification shrinkage affects stress levels in joints. [Pg.675]

Mix I ml. of benzaldehyde and i ml. of aniline in a small evaporating-basin, place the latter on a boiling water-bath and stir the mixture gently with a glass rod. Globules of water soon appear on the oily layer. After about 20 minutes place the basin in ice-water, and stir the contents well, whereupon solidification should rapidly occur. (If the material does not solidify, replace the basin on the boiling water-bath for a further 10 minutes.) Break up the solid material in the basin, transfer to a conical flask, and recrystallise from rectified spirit. The benzylidene-aniline is obtained as colourless crystals, m.p, 52° yield, o-8 g. [Pg.230]

Aqueous solutions do not usually ignite even though the solute is highly inflammable, e.g., an aqueous solution of ethanol containing less than 50% of the latter. When aqueous solutions of solid substances are heated on a crucible lid, they usually "spit" vigorously immediately before solidification. [Pg.320]

The composition of the liquid will therefore pass along bg the composition of the solid will at the same time follow the curve fc. At the point c, the last traces of liquid of composition gfare just disappearing and solidification... [Pg.33]

Place an intimate mixture of 125 g. of powdered, anhydrous zinc chloride and 26-5 g. of acetophenonephenylhydrazone in a tall 500 ml. beaker in an oil bath at 170°. Stir the mixture vigorously by hand. After 3-4 minutes the mass becomes hquid and evolution of white fumes commences. Remove the beaker from the bath and stir the mixture for 5 minutes. Then stir in 100 g. of clean, white sand in order to prevent solidification to a hard mass. Digest the mixture for 12-16 hours on a water bath with 400 ml. of water and 12 ml. of concentrated hydrochloric acid in order to dissolve the zinc chloride. Filter off the sand and the crude 2-phenylindole, and boil the solids with 300 ml. of rectified spirit. Treat the hot mixture with a little decolourising carbon and filter through a pre-heated Buchner funnel wash the residue with 40 ml. of hot rectified spirit. Cool the combined filtrates to room temperature, filter off the 2-phenylindole and wash it three times with 10 ml. portions of cold alcohol. Dry in a vacuum desiccator over anhydrous calcium chloride. The yield of pure 2-phenylindole, m.p. 188-189°, is 16 g. [Pg.852]

Equation (11-48) is applicable to burdens in the solid, liquid, or gaseous phase, either static or in laminar motion it is apphcable to solidification equipment and to divided-solids equipment such as metal belts, moving trays, stationaiy vertical tubes, and stationaiy-shell fluidizers. [Pg.1054]

Rotating-drum-type and belt-type heat-transfer equipment forms granular products directly from fluid pastes and melts without intermediate preforms. These processes are described in Sec. 5 as examples of indirect heat transfer to and from the solid phase. When solidification results from melt freezing, the operation is known as flaking. If evaporation occurs, solidification is by diying. [Pg.1903]

Purification of a chemical species by solidification from a liquid mixture can be termed either solution crystallization or ciystallization from the melt. The distinction between these two operations is somewhat subtle. The term melt crystallization has been defined as the separation of components of a binaiy mixture without addition of solvent, but this definition is somewhat restrictive. In solution crystallization a diluent solvent is added to the mixture the solution is then directly or indirec tly cooled, and/or solvent is evaporated to effect ciystallization. The solid phase is formed and maintained somewhat below its pure-component freezing-point temperature. In melt ciystallization no diluent solvent is added to the reaction mixture, and the solid phase is formed by cooling of the melt. Product is frequently maintained near or above its pure-component freezing point in the refining sec tion of the apparatus. [Pg.1989]

C, is the concentration of impurity or minor component in the solid phase, and Cf is the impurity concentration in the hquid phase. The distribution coefficient generally varies with composition. The value of k is greater than I when the solute raises the melting point and less than I when the melting point is depressed. In the regions near pure A or B the hquidus and solidus hues become linear i.e., the distribution coefficient becomes constant. This is the basis for the common assumption of constant k in many mathematical treatments of fractional solidification in which ultrapure materials are obtained. [Pg.1989]

FIG. 22-1 phase diagram for components exhibiting complete solid solution. (Zief and Wilcox, Fractional Solidification, -ool. 1, Marcel Dehher, New York, 1967, p. 31. )... [Pg.1990]

The distribution-coefficient concept is commonly applied to fractional solidification of eutectic systems in the ultrapure portion of the phase diagram. If the quantity of impurity entrapped in the solid phase for whatever reason is proportional to that contained in the melt, then assumption of a constant k is valid. It should be noted that the theoretical yield of a component exhibiting binary eutectic behavior is fixed by the feed composition and position of the eutectic. Also, in contrast to the case of a solid solution, only one component can be obtained in a pure form. [Pg.1990]

Blockage of relief device by solids deposition (polymerization, solidification). Possible loss of overpressure protection. [Pg.55]

The iron-carbon solid alloy which results from the solidification of non blastfurnace metal is saturated with carbon at the metal-slag temperature of about 2000 K, which is subsequendy refined by the oxidation of carbon to produce steel containing less than 1 wt% carbon, die level depending on the application. The first solid phases to separate from liquid steel at the eutectic temperature, 1408 K, are the (f.c.c) y-phase Austenite together with cementite, Fe3C, which has an orthorhombic sttiicture, and not die dieniiodynamically stable carbon phase which is to be expected from die equilibrium diagram. Cementite is thermodynamically unstable with respect to decomposition to h on and carbon from room temperature up to 1130 K... [Pg.184]

Driving forces for solid-state phase transformations are about one-third of those for solidification. This is just what we would expect the difference in order between two crystalline phases will be less than the difference in order between a liquid and a crystal the entropy change in the solid-state transformation will be less than in solidification and AH/T will be less than AH/T . [Pg.53]

Let us now cool the interface down to a temperature T(driving force for solidification. This will bias the energies of the A and B molecules in the way shown in Fig. 6.5. Then the number of molecules jumping from liquid to solid per second is... [Pg.60]

In chemicals like salol the molecules are elongated (non-spherical) and a lot of energy is needed to rotate the randomly arranged liquid molecules into the specific orientations that they take up in the crystalline solid. Then q is large, is small, and the interface is very sluggish. There is plenty of time for latent heat to flow away from the interface, and its temperature is hardly affected. The solidification of salol is therefore interface controlled the process is governed almost entirely by the kinetics of molecular diffusion at the interface. [Pg.62]

In metals the situation is quite the opposite. The spherical atoms move easily from liquid to solid and the interface moves quickly in response to very small undercoolings. Latent heat is generated rapidly and the interface is warmed up almost to T, . The solidification of metals therefore tends to be heat-flow controlled rather than interface controlled. [Pg.62]

The solidification speed of salol is about 2.3 mm mim at 10°C. Using eqn. (6.15) estimate the energy barrier q that must be crossed by molecules moving from liquid sites to solid sites. The melting point of salol is 43°C and its latent heat of fusion is 3.2 x 10 ° J molecule F Assume that the molecular diameter is about 1 nm. [Pg.66]


See other pages where Solids solidification is mentioned: [Pg.131]    [Pg.115]    [Pg.1791]    [Pg.13]    [Pg.181]    [Pg.234]    [Pg.247]    [Pg.3093]    [Pg.131]    [Pg.115]    [Pg.1791]    [Pg.13]    [Pg.181]    [Pg.234]    [Pg.247]    [Pg.3093]    [Pg.380]    [Pg.446]    [Pg.171]    [Pg.22]    [Pg.33]    [Pg.33]    [Pg.130]    [Pg.79]    [Pg.1029]    [Pg.1089]    [Pg.1118]    [Pg.1899]    [Pg.1990]    [Pg.203]    [Pg.16]    [Pg.16]    [Pg.205]    [Pg.58]    [Pg.63]    [Pg.66]   
See also in sourсe #XX -- [ Pg.54 , Pg.56 ]




SEARCH



Solidification

© 2024 chempedia.info