Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soil/properties, 4-17 adsorption contaminated

The conversion of parathion is affected by soil constituents in the order kaolinite > smectite > organic matter and is related inversely to the adsorption affinity of these materials for this contaminant (Mingelgrin and Saltzman 1977). Although the extent of hydrolysis differs among soils, it is apparent that soil-surface degradation of parathion is caused by hydrolysis of the phosphate ester bond. The presence of water in the soil-parathion system led to a decrease in the surface-induced degradation of the organic molecule and diminished the effect of natural soil properties on its persistence. [Pg.336]

In the presence of NAPL, the concentration of contaminants in the soil moisture (Cw) can be calculated simply from the solubility of the compounds (equation 3 in Table 14.3). Adsorption of contaminants to the soil particles is a much more complex phenomenon, which depends both on contaminant properties and on soil characteristics. The simplest model for describing adsorption is based on the observation that organic compounds are preferentially bound to the organic matter of soil, and the following linear equation is proposed for calculating the adsorbed concentration (Cs) ... [Pg.527]

Soils and vadose zone information, including soil characteristics (type, holding capacity, temperature, biological activity, and engineering properties), soil chemical characteristics (solubility, ion specification, adsorption, leachability, cation exchange capacity, mineral partition coefficient, and chemical and sorptive properties), and vadose zone characteristics (permeability, variability, porosity, moisture content, chemical characteristics, and extent of contamination)... [Pg.601]

Based on their molecular properties as well as the properties of the solvent, each inorganic or organic contaminant exhibits an adsorption isotherm that corresponds to one of the isotherm classifications just described. Figure 5.1 illustrates these isotherms for different organic contaminants, adsorbed either from water or hexane solution on kaolinite, attapulgite, montmorillonite, and a red Mediterranean soil (Yaron et al. 1996). These isotherms may be used to deduce the adsorption mechanism. [Pg.97]

The adsorption of contaminants on geosorbents also is affected by climatic conditions reflected in the subsurface temperature and moisture status. Calvet (1984) showed how the soil moisture content may affect adsorption of contaminants originating from agricultural practices. The moisture content determines the accessibility of the adsorption sites, and water affects the surface properties of the adsorbent. The competition for adsorption sites between water and, say, insecticides may explain this behavior. Preferential adsorption of the more polar water molecules by soil hinders... [Pg.113]

Indicates the pore space available for water and roots influenced by soil composition (mineral content, mineral type, and organic matter) and soil texture Affects adsorption of the chemical Affects the surface area where adsorption can take place Influences partitioning and availability of chemicals Affects ability of a soil to transmit water or air Dictates the porosity of the soil Affects the form, reactivity, solubility, availability, and toxicity of some contaminants Affects the toxicity of some substances (mainly heavy metals) with binding or antagonistic mechanisms, for example, by alkaline-earth metals and aluminum Organic matter content, type, and % carbon Influences soil sorption properties for heavy metals and... [Pg.37]

The major mineral groups commonly found in soil include (1) aluminosilicates, (2) oxides, and (3) organic matter. Through their surface electrochemical properties, these soil minerals control adsorption, transformation, and release behavior of chemical constituents (e.g., nutrients and contaminants) to water or soil solution. Soil-surface electrochemical properties vary between soil types and depend on factors such as parent material, climate, and vegetation (Table 3.1). Generally, the overall makeup of soil is (Fig. 3.1)... [Pg.100]

Specific adsorption on well defined materials has been the subject of many reviews [8-13]. Specific adsorption plays a key role in transport of nutrients and contaminants in the natural environment, and many studies with natural, complex, and ill defined materials have been carried out. Specific adsorption of ions by soils and other materials was reviewed by Barrow [14,15]. The components of complex mineral assemblies can differ in specific surface area and in affinity to certain solutes by many orders of magnitude. For example, in soils and rocks, (hydr)oxides of Fe(IH) and Mn(IV) are the main scavengers of metal cations and certain anions, even when their concentration expressed as mass fraction is very low. Traces of Ti02 present as impurities are responsible for the enhanced uptake of U by some natural kaolinites. In general, complex materials whose chemical composition seems very similar can substantially differ in their sorption properties due to different nature and concentration of impurities , which are dispersed in a relatively inert matrix, and which play a crucial role in the sorption process. In this respect the significance of parameters characterizing overall sorption properties of complex materials is limited. On the other hand the assessment of the contributions of particular components of a complex material to the overall sorption properties would be very tedious. [Pg.314]


See other pages where Soil/properties, 4-17 adsorption contaminated is mentioned: [Pg.230]    [Pg.420]    [Pg.992]    [Pg.432]    [Pg.186]    [Pg.35]    [Pg.62]    [Pg.125]    [Pg.121]    [Pg.19]    [Pg.222]    [Pg.210]    [Pg.428]    [Pg.7]    [Pg.423]    [Pg.461]    [Pg.906]    [Pg.560]    [Pg.363]    [Pg.378]    [Pg.113]    [Pg.113]    [Pg.15]    [Pg.18]    [Pg.540]    [Pg.277]    [Pg.343]    [Pg.565]    [Pg.230]    [Pg.3]    [Pg.46]    [Pg.6]    [Pg.106]    [Pg.48]    [Pg.545]    [Pg.214]    [Pg.244]    [Pg.52]    [Pg.587]    [Pg.239]    [Pg.289]    [Pg.425]    [Pg.1164]   
See also in sourсe #XX -- [ Pg.112 , Pg.118 , Pg.123 , Pg.125 ]




SEARCH



Adsorption properties

Contaminant Adsorption

Soil contaminant

Soil contamination

Soil/properties, 4-17 adsorption

© 2024 chempedia.info