Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium isolation

Agarose gels M sodium isolation of hyaluronic acid- 130... [Pg.49]

SDT Sodium dump tank SIV Sodium isolating valve CM IHX condition monitoring... [Pg.248]

Conventional associative ionization (AI) occurring at ambient temperature proceeds in two steps excitation of isolated atoms followed by molecular autoionization as the two atoms approach on excited molecular potentials. In sodium for example [44]... [Pg.2475]

Hydrolysis of />-Tolunitrile. As in the case of benzonitrile, alkaline h> drolysis is preferable to hydrolysis by 70% sulphuric acid. Boil a mixture of 5 g. of p-tolunitrile, 75 ml. of 10% aqueous sodium hydroxide solution and 15 ml. of ethanol under a reflux water-condenser. The ethanol is added partly to increase the speed of the hydrolysis, but in particular to prevent the nitrile (which volatilises in the steam) from actually crystallising in the condenser. The solution becomes clear after about i hour s heating, but the boiling should be continued for a total period of 1-5 hours to ensure complete hydrolysis. Then precipitate and isolate the p-toluic acid, CH3CgH4COOH, in precisely the same way as the benzoic acid in the above hydrolysis of benzonitrile. Yield 5 5 g. (almost theoretical). The p-toluic acid has m.p. 178°, and may be recrystallised from a mixture of equal volumes of water and rectified spirit. [Pg.195]

Cool the solution thoroughly in ice-water, and then make it alkaline by the cautious addition (with stirring or shaking) of a solution of 80 g. of sodium hydroxide in ca, 150 ml. of water. Now isolate the free tertiary amine by steam-distillation into hydrochloric acid, etc., precisely as for the primary amine in Stage (D), but preferably using a smaller flask for the final distillation. Collect the 2-dimethylamino- -octane, b.p. 76-78715 mm. Yield, 13-14 g. At atmospheric pressure the amine has b.p. 187-188°. [Pg.227]

Aldehydes and ketones may frequently be identified by their semicarbazones, obtained by direct condensation with semicarbazide (or amino-urea), NH,NHCONH a compound which is a monacidic base and usually available as its monohydrochloride, NHjCONHNH, HCl. Semicarbazones are particularly useful for identification of con jounds (such as acetophenone) of which the oxime is too soluble to be readily isolated and the phenylhydrazone is unstable moreover, the high nitrogen content of semicarbazones enables very small quantities to be accurately analysed and so identified. The general conditions for the formation of semicarbazones are very similar to those for oximes and phenylhydrazones (pp. 93, 229) the free base must of course be liberated from its salts by the addition of sodium acetate. [Pg.258]

When the sodium derivative, which is used in ethanol it solution without intermediate isolation, is boiled with an alkyl halide, e.g., methyl iodide,... [Pg.269]

Arylarsonic acids have usually a very low solubility in cold water. They are however amphoteric, since with, for example, sodium hydroxide they form sodium salts as above and with acids such as hydrochloric acid they form salts of the type [CaHjAsCOHljlCl. Both types of salt are usually soluble in water, and to isolate the free acid the aqueous solution has to be brought to the correct pH for most arsonic acids this can be achieved by niaking the solution only just acid to Congo Red, when the free acid will usually rapidly separate. [Pg.312]

In the example given below, phenylarsonic acid is reduced to dichlorophenyh arsine, Ccll jAsCl. This compound when added to aqueous sodium hydroxide and treated with benzyl chloride gives benzylphenylarsinic acid, which is readily isolated from solution. [Pg.314]

In the isolation of organic compounds from aqueous solutions, use is frequently made of the fact that the solubility of many organic substances in water is considerably decreased by the presence of dissolved inorganic salts (sodium chloride, calcium chloride, ammonium sulphate, etc.). This is the so-called salting-out effect. A further advantage is that the solubility of partially miscible organic solvents, such as ether, is considerably less in the salt solution, thus reducing the loss of solvent in extractions. [Pg.151]

Two reactants. In the preparation of n-hexane, 61 5 g. of n-propyl bromide were treated with 23 g. of sodium and 18 0 g. of n-hexane were ultimately isolated. [Pg.203]

Hexamethylene glycol, HO(CH2)gOH. Use 60 g. of sodium, 81 g. of diethyl adipate (Sections 111,99 and III,100) and 600 ml. of super-d ethyl alcohol. All other experimental detaUs, including amounts of water, hydrochloric acid and potassium carbonate, are identical with those for Telramelhylene Glycol. The yield of hexamethylene glycol, b.p. 146-149°/ 7 mm., is 30 g. The glycol may also be isolated by continuous extraction with ether or benzene. [Pg.251]

An alternative method for isolating the n-butyl ether utilises the fact that n-butyl alcohol is soluble in saturated calcium chloride solution whilst n-butyl ether is slightly soluble. Cool the reaction mixture in ice and transfer to a separatory fimnel. Wash cautiously with 100 ml. of 2-5-3N sodium hydroxide solution the washings should be alkaline to litmus. Then wash with 30 ml. of water, followed by 30 ml. of saturated calcium chloride solution. Dry with 2-3 g. of anhydrous calcium chloride, filter and distil. Collect the di-n-butyl ether at 139-142°. The yield is 20 g. [Pg.313]

Acetaldehyde (and other aldehydes containing at least one hydrogen atom in the a position) when treated with a small quantity of dilute sodium hydr oxide solution or other basic catalyst gives a good yield of aldol (p hydroxy-n-but3Taldehyde) (I), which readily loses water, either by heating the isolated aldol alone or with a trace of mineral acid, to form crotonaldehyde (II) ... [Pg.351]

Ethyl maleate of almost equal purity may be obtained by refluxing a mixture of 20 g. of pure maleic a.oid, 37 g. (47 ml.) of absolute ethyl alcohol, 05 ml. of sodium-dried benzene and 4 ml. of concentrated sulphuric acid for 12 hours. The ester is isolated as described for Diethyl Adipate (Section 111,100). The yield of diethyl maleate, b.p. 219-220°, is 26 g. [Pg.389]

The acid, if monobasic, can usually be distilled directly from the reaction mixture. If this procedure is not possible, the reaction mixture is poured into excess of crushed ice, and the acid is isolated by ether extraction or by other suitable means. The acid is then characterised (Section 111,85). The addition of hydrochloric acid (as sodium chloride say 5 per cent, of the weight of sulphuric acid) increases the rate of the reaction. [Pg.410]

The distillate weighs about 110 g. and contains methyl formate and methylal. If it is placed in a flask provided with a reflux condenser and a solution of 25 g. of sodium hydroxide in 40 ml. of water is added, the methyl formate is liydrolysed to sodium formate and the methylal separates on the surface. The latter may be removed, dried with anhydrous calcium chloride and distilled about 30 g. of methylal, b.p. 37-42°, are obtained. If the aqueous layer is evaporated to diyness, about 25 g. of sodium formate are isolated. [Pg.416]

Because of the great solubility of sulphonic acids in water and the consequent difficulty in crystallisation, the free sulphonic adds are not usually isolated but are converted directly into the sodium salts. The simplest procedure is partly to neutralise the reaction mixture (say, with solid sodium bicarbonate) and then to pour it into water and add excess of sodium chloride. An equilibrium is set up, for example ... [Pg.548]

If the presence of unreduced nitrobenzene is suspected (odour and/or high b.p. residue), treat all the product with excess of dilute hydrochloric acid and remove the nitrobenzene either by steam distillation or by ether extraction render the residue alkaline with sodium hydroxide solution and isolate the aniline os before. [Pg.565]

Hydrolysis of benzanilide. Place 5 g. of benzanilide and 50 ml. of 70 per cent, sulphuric acid in a small flask fitted with a reflux condenser, and boU gently for 30 minutes. Some of the benzoio acid will vapourise in the steam and solidify in the condenser. Pour 60 ml. of hot water down the condenser this will dislodge and partially dissolve the benzoic acid. Cool the flask in ice water filter off the benzoic acid (anifine sulphate does not separate at this dilution), wash well with water, drain, dry upon filter paper, and identify by m.p. (121°) and other tests. Render the filtrate alkaline by cautiously adding 10 per cent, sodium hydroxide solution, cool and isolate the aniline by ether extraction. Recover the ether and test the residue for anifine (Section IV,100). [Pg.583]

To isolate the triphenylguanidine, dilute the residue in the flask with 50 ml. of water, add 2-3 g. of decolourising carbon, warm, and filter. Cool the solution in ice, and filter oflF the hydrochloride at the pump. Dissolve it in the minimum volume of hot water, render the solution alkaline with sodium hydroxide, and allow to cool. Filter off the free base (triphenylguanidine), and recrystallise it from alcohol it separates in colourless crystals, m.p. 144°, The yield is 3 g. [Pg.643]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Phenol may be nitrated with dilute nitric acid to 3deld a mixture of o- and nitrophenols the 3deld of p-nitrophenol is increased if a mixture of sodium nitiute and dilute sulphuric acid is employed. Upon steam distilling the mixture, the ortho isomer passes over in a substantially pure form the para isomer remains in the distillation flask, and can be readily isolated by extraction with hot 2 per cent, hydrochloric acid. The preparation of m-nitrophenol from wt-nitroaniline by means of the diazo reaction is described in Section IV,70. [Pg.665]

Method 2. Into a 500 ml. round-bottomed flask place 120 ml. of dry A.R. benzene, and 35 g. (29 ml.) of redistilled benzoyl chloride. Weigh out 30 g. of finely-powdered, anhydrous aluminium chloride into a dry corked test-tube, and add the solid, with frequent shaking, during 10 minutes to the contents of the flask. Fit a reflux condenser to the flask, and heat on a water bath for 3 hours or until hydrogen chloride is no longer evolved. Pour the contents of the flask wliile still warm into a mixture of 200 g. of crushed ice and 100 ml. of concentrated hydrochloric acid. Separate the upper benzene layer (filter first, if necessary), wash it with 50 ml. of 5 per cent, sodium hydroxide solution, then with water, and dry with anhydrous magnesium sulphate. Isolate the benzophenone as in Method 1. The yield is 30 g. [Pg.734]

Mandelic acid. This preparation is an example of the synthesis of an a-hydroxy acid by the cyanohydrin method. To avoid the use of the very volatile and extremely poisonous hquid hydrogen cyanide, the cyanohydrin (mandelonitrile) is prepared by treatment of the so um bisulphite addition compound of benzaldehj de (not isolated) with sodium cyanide ... [Pg.754]

One method of preparing sulphlnic acids has already been described (diazo reaction. Section IV,65). Reduction of a sulphonyl chloride with zinc powder and water affords the zinc salt of the sulphinic acid, converted by sodium carbonate to the sodium salt (in which form it is conveniently isolated), and by hydrochloric acid into the somewhat unstable sulphinic acid, for example ... [Pg.821]

The pyridine procedure may be apphed to the preparation of other esters they are isolated by ether extraction. The yields are generally better than by the sodium hydroxide method. [Pg.826]

An alternative method of removing the aniline is to add 30 ml. of concentrated sulphuric acid carefully to the steam distillate, cool the solution to 0-5°, and add a concentrated solution of sodium nitrite until a drop of the reaction mixture colours potassium iodide - starch paper a deep blue instantly. As the diazotisation approaches completion, the reaction becomes slow it will therefore be necessary to teat for excess of nitrous acid after an interval of 5 minutes, stirring all the whUe. About 12 g. of sodium nitrite are usually required. The diazotised solution is then heated on a boiling water bath for an hour (or until active evolution of nitrogen ceases), treated with a solution of 60 g. of sodium hydroxide in 200 ml. of water, the mixture steam-distilled, and the quinoline isolated from the distillate by extrsM-tion with ether as above. [Pg.829]


See other pages where Sodium isolation is mentioned: [Pg.305]    [Pg.48]    [Pg.305]    [Pg.48]    [Pg.163]    [Pg.358]    [Pg.364]    [Pg.362]    [Pg.179]    [Pg.308]    [Pg.355]    [Pg.383]    [Pg.482]    [Pg.529]    [Pg.553]    [Pg.565]    [Pg.568]    [Pg.634]    [Pg.638]    [Pg.695]    [Pg.703]    [Pg.730]    [Pg.731]    [Pg.767]    [Pg.846]   
See also in sourсe #XX -- [ Pg.307 ]




SEARCH



© 2024 chempedia.info