Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver solvation

The chemistry of gold is more diversified than that of silver. Six oxidation states, from -I to III and V, occur in its chemistry. Gold(-I) and Auv have no counterparts in the chemistry of silver. Solvated electrons in liquid ammonia can reduce gold to give the Au" ion which is stable in liquid ammonia (E° = -2.15 V). In the series of binary compounds MAu (M = Na, K, Rb, Cs), the metallic character decreases from Na to Cs. CsAu is a semiconductor with the CsCl structure and is best described as an ionic compound, Cs+Au . The electron affinity of gold (—222.7 kJ mol"1) is comparable to that of iodine (-295.3 kJ mol-1). Gold in the oxidation state -I is also found in the oxides (M+ Au O2 (M = Rb, Cs) these, too, have semiconducting properties.1... [Pg.1086]

The perfluoroalkylsilver complexes exist in a dynamic equilibrium in solution with solvated silver ion and anionic perfluoroalkylsilver complexes such as Ag[CF(CF5) r [277] The triflnoromethylated silver complex, Ag(CF3)4 , is prepared via reaction of bis(trifIuoromethyl)cadmium with silver nitrate in acetoni trile [278]... [Pg.717]

One other long-term condition that takes place with relatively low level DC fields in the presence of moisture is the migration of the metal of the conductor into the plastic. This was discovered to be a common thing in the past with silver conductors and phenolic insulators. The first instance of field failures were discovered in telephone equipment. The problem can occur with other metals with phenolic and also conceivably with other plastics that are moisture sensitive and can have a solvating action on the conductor metals that they contact. Most of these type plastics should be avoided inside hermetically sealed containers with movable contacts. Vapors released from the organic plastic deposit on the contacts to produce an insulation layer leading to contact failure. [Pg.228]

It forms a stable silver(I) complex in acetonitrile, in keeping with the ability of MeCN to solvate Ag+ in the presence of water, disproportionation occurs [62],... [Pg.290]

Ozin and Huber 112) synthesized and characterized very small silver particles, Ag n = 2-5) by conventional deposition methods, as well as by a novel technique that they have termed "cryophotoaggrega-tion. This study will be discussed in detail in Section III. Of interest here is a study of silver atoms and small, silver clusters entrapped in ice and high-molecular-weight paraffin (n-C22H46, n-C32Hg8) matrices 146) (see Figs. 7 and 8, and Tables IV and V). Besides the intriguing, multiple-site (solvation) occupancy of atomic silver in ice matrices, and their thermal and photochemical interconvertibility, their extremely... [Pg.93]

A kinetic study of the previously reported substitution of aromatic nitro groups by tervalent phosphorus has established an aromatic 5n2 mechanism. Similarities in values of activation energies, and in relative reactivities of phosphite and phosphonite esters, between this displacement and the Arbusov reaction suggest a related mechanism (31), while the lack of reactivity of p-dinitrobenzene is attributed to the need for intramolecular solvation (32). The exclusive formation of ethyl nitrite, rather than other isomers, is confirmed from the decomposition of triethoxy-(ethyl)phosphonium fluoroborate (33) in the presence of silver nitrite. A mechanism involving quinquevalent phosphorus (34) still seems applicable, particularly in view of the recent mechanistic work on the Arbusov reaction. ... [Pg.74]

The solvation property of the cations of this very polar aprotic solvent can make some salts more stable. Therefore, aluminium, sodium, mercury or silver perchlorate solutions are explosive. The same goes for iron (III) nitrate solutions. [Pg.348]

Electrodes of the first kind have only limited application to titration in non-aqueous media a well-known example is the use of a silver electrode in the determination of sulphides and/or mercaptans in petroleum products by titration in methanol-benzene (1 1) with methanolic silver nitrate as titrant. As an indicator electrode of the second kind the antimony pH electrode (or antimony/antimony trioxide electrode) may be mentioned its standard potential value depends on proton solvation in the titration medium chosen cf., the equilibrium reaction on p. 46). [Pg.304]

See other metal perchlorates, oxidants, solvated oxosalt incidents 0013. Silver fluoride... [Pg.13]

The development of more benign alternatives to cyanide for gold-leaching (see Section 9.17.3.1) such as thiourea, thiocyanate, or thiosulfate, which form stable complexes in water has prompted research to identify suitable solvent extractants from these media. Cyanex 301, 302, 272, Ionquest 801, LIX 26, MEHPA, DEHPA, Alamine 300 (Table 5) have been evaluated as extractants for gold or silver from acidic thiourea solutions.347 Whilst the efficacy of Cyanex 301 and 302 was unaffected by the presence of thiourea in the aqueous feed, the loading of the other extractants is severely depressed. Formation of solvated complexes of gold and of an inner-sphere complex of silver has been proposed.347... [Pg.792]

Association constants for salts of copper, silver, and thallium appear to reflect solvation in a fairly simple way. For example, of the perchlorate salts, only those of the poorly solvated thallium ion show association. [Pg.49]

Fig. 8. Free enthalpies of solvation AGsoi for the halides of silver and sodium in water... Fig. 8. Free enthalpies of solvation AGsoi for the halides of silver and sodium in water...
Adsorption of Ag on the surface of PdO is also an interesting option offered by colloidal oxide synthesis. Silver is a well-known promoter for the improvement of catalytic properties, primarily selectivity, in various reactions such as hydrogenation of polyunsaturated compounds." The more stable oxidation state of silver is -F1 Aquo soluble precursors are silver nitrate (halide precursors are aU insoluble), and some organics such as acetate or oxalate with limited solubility may also be used." Ag" " is a d ° ion and can easily form linear AgL2 type complexes according to crystal field theory. Nevertheless, even for a concentrated solution of AgNOs, Ag+ does not form aquo complexes." Although a solvation sphere surrounds the cation, no metal-water chemical bonds have been observed. [Pg.278]

Aromatic radical-cations are generated by pulse-radiolysis of benzene derivatives in aqueous solution. Radiolysis generates solvated electrons, protons and hydroxyl radicals. The electrons are converted by reaction with peroxydisulpbate ion to form sulphate radical-anion, which is an oxidising species, and sulphate. In another proceedure, electrons and protons react with dissolved nitrous oxide to form hydroxyl radicals and water, Hydroxyl radicals are then made to react with either thallium(i) or silver(i) to generate thallium(ii) or silver(ll) which are powerfully... [Pg.188]

It was also observed, in 1973, that the fast reduction of Cu ions by solvated electrons in liquid ammonia did not yield the metal and that, instead, molecular hydrogen was evolved [11]. These results were explained by assigning to the quasi-atomic state of the nascent metal, specific thermodynamical properties distinct from those of the bulk metal, which is stable under the same conditions. This concept implied that, as soon as formed, atoms and small clusters of a metal, even a noble metal, may exhibit much stronger reducing properties than the bulk metal, and may be spontaneously corroded by the solvent with simultaneous hydrogen evolution. It also implied that for a given metal the thermodynamics depended on the particle nuclearity (number of atoms reduced per particle), and it therefore provided a rationalized interpretation of other previous data [7,9,10]. Furthermore, experiments on the photoionization of silver atoms in solution demonstrated that their ionization potential was much lower than that of the bulk metal [12]. Moreover, it was shown that the redox potential of isolated silver atoms in water must... [Pg.579]

Fig. 6 compares the nuclearity effect on the redox potentials [19,31,63] of hydrated Ag+ clusters E°(Ag /Ag )aq together with the effect on ionization potentials IPg (Ag ) of bare silver clusters in the gas phase [67,68]. The asymptotic value of the redox potential is reached at the nuclearity around n = 500 (diameter == 2 nm), which thus represents, for the system, the transition between the mesoscopic and the macroscopic phase of the bulk metal. The density of values available so far is not sufficient to prove the existence of odd-even oscillations as for IPg. However, it is obvious from this figure that the variation of E° and IPg do exhibit opposite trends vs. n, for the solution (Table 5) and the gas phase, respectively. The difference between ionization potentials of bare and solvated clusters decreases with increasing n as which corresponds fairly well to the solvation free energy of the cation deduced from the Born solvation model [45] (for the single atom, the difference of 5 eV represents the solvation energy of the silver cation) [31]. [Pg.588]

Copper, silver, and gold colloids have been prepared by Chemical Liquid Deposition (CLD) with dimethoxymethane, 2-methoxyethyl ether, and ethylene glycol dimethyl ether. The metals are evaporated to yield atoms which are solvated at low temperatures and during the warm-up process colloidal sols with metal clusters are obtained. Evaporation of the solvent was carried out under vacuum-generating metal films. These films are showing very low carbon/hydrogen content and were characterized by elemental analyses and infrared spectroscopy (Cardenas et al., 1994). [Pg.177]

Silver-Silver Ion Electrode This is the most popular reference electrode used in non-aqueous solutions. Since Pleskov employed it in acetonitrile (AN) in 1948, it has been used in a variety of solvents. It has a structure as shown in Fig. 6.1(a) and is easy to construct. Its potential is usually reproducible within 5 mV, if it is prepared freshly using pure solvent and electrolyte. The stability of the potential, however, is not always good enough. The potential is stable in AN, because Ag+ is strongly solvated in it. In propylene carbonate (PC) and nitromethane (NM), however, Ag+ is solvated only weakly and the potential is easily influenced by the presence of trace water and other impurities. In dimethylformamide (DMF), on the other hand, Ag+ is slowly reduced to Ag°, causing a gradual potential shift to the negative direction.2) This shift can reach several tens of millivolts after a few days. [Pg.169]


See other pages where Silver solvation is mentioned: [Pg.2901]    [Pg.235]    [Pg.337]    [Pg.332]    [Pg.1185]    [Pg.134]    [Pg.1050]    [Pg.1331]    [Pg.94]    [Pg.47]    [Pg.21]    [Pg.197]    [Pg.956]    [Pg.794]    [Pg.794]    [Pg.293]    [Pg.79]    [Pg.49]    [Pg.17]    [Pg.21]    [Pg.23]    [Pg.483]    [Pg.487]    [Pg.694]    [Pg.94]    [Pg.347]    [Pg.332]    [Pg.378]    [Pg.81]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Silver compounds Solvation

Solvated silver ions

© 2024 chempedia.info