Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon Nitride Si

Silicon nitride (Si N ), resistant to oxidation, is an excellent coating for metals, as well as an adhesive and abrasive, and it is used in high-temperature crucibles. It has proven useful as heat-resistant substance for the nozzles on rocket engines. [Pg.197]

Silicon nitride Si N/. Manufacture and applications in the non-oxide ceramic sector, see Section 5.5.5.4.5. [Pg.280]

Silicon Nitride. SiUcon nitride is manufactured either as a powder as a precursor for the production of hot-pressed parts or as self-bonded, reaction-sintered, siUcon nitride parts. a-SiUcon nitride, used in the manufacture of Si N intended for hot pressing, can be obtained by nitriding Si powder in an atmosphere of H2, N2, and NH. Reaction conditions, eg, temperature, time, and atmosphere, have to be controlled closely. Special additions, such as Fe202 to the precursor material, act as catalysts for the formation of predorninately a-Si N. SiUcon nitride is ball-milled to a very fine powder and is purified by acid leaching. SiUcon nitride can be hot pressed to full density by adding 1—5% MgO. [Pg.55]

Antireflection coatings are used over the silicon surface which, without the coating, reflects ca 35% of incident sunlight. A typical coating consists of a single layer of a transparent dielectric material with a refractive index of ca 2, which is between the index of siUcon and ait or cover material. Materials such as titanium dioxide, tantalum pentoxide, Ta20, or siUcon nitride, Si N, ca 0.08-p.m thick are common. The coating and a physically textured... [Pg.470]

Other ceramic cutting-tool materials include alumina, Si-Al-0-N, alumina-carbide composites and, more recently, a composite of silicon nitride reinforced with silicon carbide whiskers. This last material can be produced by chemical-vapor infiltration (CVI) and has high strength and toughness as shown in Table 18.3.Cl... [Pg.457]

The most common a-Si H TFT structure is the so-called inverted staggered transistor structure [40], in which silicon nitride is used as the gate insulator. A schematic cross section is shown in Figure 74. The structure comprises an a-Si H channel, a gate dielectric (SiN.v), and source, drain, and gate contacts. [Pg.177]

Organometallic polymer precursors offer the potential to manufacture shaped forms of advanced ceramic materials using low temperature processing. Polysilazanes, compounds containing Si-N bonds in the polymer backbone, can be used as precursors to silicon nitride containing ceramic materials. This chapter provides an overview of the general synthetic approaches to polysilazanes with particular emphasis on the synthesis of preceramic polysilazanes. [Pg.124]

The introduction of small amounts of boron into precursors that produce silicon nitride have been known to improve the ceramic yields of silicon nitride and Si—B—C—N ceramics as first reported in 1986.110 Several reports have appeared in the past couple of years alone that utilize borazine precursors such as 2,4-diethylb-orazine and other cyclic boron precursors, such as pinacolborane, 1,3-dimethyl-1, 3-diaza-2-boracyclopentane, for their reactions with silanes, polysilazanes, and polysilylcarbodiimides for the high-yield production of Si—B—N—C ceramics.111... [Pg.53]

Boron-containing nonoxide amorphous or crystalline advanced ceramics, including boron nitride (BN), boron carbide (B4C), boron carbonitride (B/C/N), and boron silicon carbonitride Si/B/C/N, can be prepared via the preceramic polymers route called the polymer-derived ceramics (PDCs) route, using convenient thermal and chemical processes. Because the preparation of BN has been the most in demand and widespread boron-based material during the past two decades, this chapter provides an overview of the conversion of boron- and nitrogen-containing polymers into advanced BN materials. [Pg.121]

The spectrum of silicon based polymers is enriched by high tech ceramics like silicon nitride and carbide, respectively. These materials are produced by pyrolysis of appropriate polymeric precursors such as polysilanes, polycarbosilanes and polysilazanes (preceramics). These synthetic ceramics display a certain analogy to silicates, having SiC, SiN, or Si(C,N) as structural subunits instead ofSiO. [Pg.251]

The next step was the introduction of ion implantation to dope Si for thermometers. Downey et al. [66] used micromachining to realize a Si bolometer with an implanted thermometer. This bolometer had very little low-frequency noise. The use of thermometers doped by neutron transmutation instead of melt doping is described by Lange et al. [67], The evolution of bolometers sees the replacement of the nylon wires to make the conductance to the bath, used by Lange et al. with a micromachined silicon nitride membrane with a definite reduction in the heat capacity associated to the conductance G [68],... [Pg.336]

As a second example of the application of ion-beam analysis techniques to semiconductors, we take the calibration of IR absorption measurements of the hydrogen content of sputtered amorphous silicon and silicon nitride. In early measurements, the hydrogen content of glow-discharge a-Si H deduced from IR absorption measurements, using ablsinitio calculations of the absorption cross section of the Si—H IR absorption bands, was com-... [Pg.211]

In the case of H in low-temperature deposited silicon nitride films, ion beam techniques have again been used to calibrate IR absorption. The IR absorption cross sections most often quoted in the literature for Si—H and N—H bonds in plasma-deposited material are those of Lanford and Rand (1978) who used 15N nuclear reaction to calibrate their IR spectrometry. Later measurements in CVD nitride films, using similar techniques, confirmed these cross sections (Peercy et al., 1979). [Pg.212]

Another problem is degradation of the sensor due to the high UV dose. The radiation resistance of most photodiodes decreases with wavelengths. UV-enhanced Si photodiodes show a loss of 10% in sensitivity already after an accumulated dose of some hundred J/cm2 at X = 254 nm. This is the dose a sensor will have received over the lifetime of an Hg lamp. Special silicon nitride-protected photodiodes are stable up to 105 J/cm2. A filter combined with an attenuator may help to achieve the required selectivity and reduce the exposure of the detector. However, the radiation stability of the filter has to be guaranteed. [Pg.174]

Fig. 4.15. Silicon nitride spot locally deposited through a shadow mask on a bare Si-substrate... Fig. 4.15. Silicon nitride spot locally deposited through a shadow mask on a bare Si-substrate...
Mass spectrometry is also extremely useful as a process monitor. Less sophisticated residual gas analyzers (RGA) operating on the principles of mass spectrometry are available for these purposes and for end point detection. For the etching of Si 128-130), poly-Si 130), silicon nitride 130), and Si02 (729), SiF (m/e=85) has been shown to be effective for end-point detection. In addition, (m/e=14) is useful for nitride 129,130) in leak tight systems, while O (m/e =16), CO (m/e =44) and Si" " (m/e=29) are useful for oxide (757). Because of the general nature of mass spectrometry as a diagnostic tool, it should be applicable to etching studies of metals and other semiconductor materials. [Pg.274]


See other pages where Silicon Nitride Si is mentioned: [Pg.1541]    [Pg.468]    [Pg.21]    [Pg.463]    [Pg.189]    [Pg.205]    [Pg.181]    [Pg.1194]    [Pg.2251]    [Pg.219]    [Pg.2324]    [Pg.19]    [Pg.242]    [Pg.1541]    [Pg.468]    [Pg.21]    [Pg.463]    [Pg.189]    [Pg.205]    [Pg.181]    [Pg.1194]    [Pg.2251]    [Pg.219]    [Pg.2324]    [Pg.19]    [Pg.242]    [Pg.358]    [Pg.359]    [Pg.27]    [Pg.214]    [Pg.269]    [Pg.378]    [Pg.137]    [Pg.145]    [Pg.282]    [Pg.393]    [Pg.375]    [Pg.595]    [Pg.254]    [Pg.37]    [Pg.8]    [Pg.132]    [Pg.240]    [Pg.114]    [Pg.415]    [Pg.420]   


SEARCH



SILICONES (SI)

Si SILICON

Silicon nitride

© 2024 chempedia.info