Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon experiments

Currently, there is a lack of EBIC experiments devoted to the electrical properties of dislocations in silicon. Experiments such as scanning transmission electron beam induced current (STEBIC) could be used to reinvestigate these electrical properties, especially those of perfect dislocations. [Pg.104]

Figure Al.3.17. Modulated reflectivity spectrum of silicon. The theoretical curve is obtained from an empirical pseudopotential calculation [25], The experimental curve is from a wavelength modulation experiment from [32],... Figure Al.3.17. Modulated reflectivity spectrum of silicon. The theoretical curve is obtained from an empirical pseudopotential calculation [25], The experimental curve is from a wavelength modulation experiment from [32],...
Figure Al.3.29. Pair correlation and structure factor for liquid silicon from experiment [41],... Figure Al.3.29. Pair correlation and structure factor for liquid silicon from experiment [41],...
Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-... Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-...
Although aimed at the introductory class, this simple experiment provides a nice demonstration of the use of GG for a qualitative analysis. Students obtain chromatograms for several possible accelerants using headspace sampling and then analyze the headspace over a sealed sample of charred wood to determine the accelerant used in burning the wood. Separations are carried out using a wide-bore capillary column with a stationary phase of methyl 50% phenyl silicone and a flame ionization detector. [Pg.610]

This somewhat lengthy experiment provides a thorough introduction to the use of GG for the analysis of trace-level environmental pollutants. Sediment samples are extracted by sonicating with 3 X 100-mL portions of 1 1 acetone hexane. The extracts are then filtered and concentrated before bringing to a final volume of 10 mL. Samples are analyzed with a capillary column using a stationary phase of 5% phenylmethyl silicone, a splitless injection, and an EGD detector. [Pg.611]

The principle of headspace sampling is introduced in this experiment using a mixture of methanol, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, benzene, toluene, and p-xylene. Directions are given for evaluating the distribution coefficient for the partitioning of a volatile species between the liquid and vapor phase and for its quantitative analysis in the liquid phase. Both packed (OV-101) and capillary (5% phenyl silicone) columns were used. The GG is equipped with a flame ionization detector. [Pg.611]

An example of an analysis done on polysilicon and single-crystal Czochralski silicon (CZ) is shown in Table 1. As can be seen, polysilicon, which was used to grow the crystal, is dirtier than the CZ silicon. This is expected, since segregation coefficients limit the incorporation of each element into the crystal boule during the crystal growth process. All values shown in the table are from bulk analysis. Table 2 shows NAA data obtained in an experiment where surface analysis was accom-... [Pg.676]

NAA cannot be used for some important elements, such as aluminum (in a Si or Si02 matrix) and boron. The radioactivity produced from silicon directly interferes with that ftom aluminum, while boron does not produce any radioisotope following neutron irradiation. (However, an in-beam neutron method known as neutron depth profiling C3J be used to obtain boron depth profiles in thin films. ) Another limitation of NAA is the long turn-around time necessary to complete the experiment. A typical survey measurement of all impurities in a sample may take 2-4 weeks. [Pg.678]

Interatomic potentials began with empirical formulations (empirical in the sense that analytical calculations based on them... no computers were being used yet... gave reasonable agreement with experiments). The most famous of these was the Lennard-Jones (1924) potential for noble gas atoms these were essentially van der Waals interactions. Another is the Weber potential for covalent interactions between silicon atoms (Stillinger and Weber 1985) to take into account the directed covalent bonds, interactions between three atoms have to be considered. This potential is well-tested and provides a good description of both the crystalline and... [Pg.472]

In the JKR experiments, a macroscopic spherical cap of a soft, elastic material is in contact with a planar surface. In these experiments, the contact radius is measured as a function of the applied load (a versus P) using an optical microscope, and the interfacial adhesion (W) is determined using Eqs. 11 and 16. In their original work, Johnson et al. [6] measured a versus P between a rubber-rubber interface, and the interface between crosslinked silicone rubber sphere and poly(methyl methacrylate) flat. The apparatus used for these measurements was fairly simple. The contact radius was measured using a simple optical microscope. This type of measurement is particularly suitable for soft elastic materials. [Pg.94]

In an attempt to determine the applicability of JKR and DMT theories, Lee [91] measured the no-load contact radius of crosslinked silicone rubber spheres in contact with a glass slide as a function of their radii of curvature (R) and elastic moduli (K). In these experiments, Lee found that a thin layer of silicone gel transferred onto the glass slide. From a plot of versus R, using Eq. 13 of the JKR theory, Lee determined that the work of adhesion was about 70 7 mJ/m". a value in clo.se agreement with that determined by Johnson and coworkers 6 using Eqs. 11 and 16. [Pg.101]

The measures of solid state reactivity to be described include experiments on solid-gas, solid-liquid, and solid-solid chemical reaction, solid-solid structural transitions, and hot pressing-sintering in the solid state. These conditions are achieved in catalytic activity measurements of rutile and zinc oxide, in studies of the dissolution of silicon nitride and rutile, the reaction of lead oxide and zirconia to form lead zirconate, the monoclinic to tetragonal transformation in zirconia, the theta-to-alpha transformation in alumina, and the hot pressing of aluminum nitride and aluminum oxide. [Pg.161]

Very high pressure and temperature experiments with the Sawaoka fixture on Nb-Si powder mixtures show that the silicon melted but the higher melt temperature niobium did not. Under these conditions, only chemical reaction... [Pg.191]

The five predictions for AHf(SiF4)—we were not able to model the reaction involving Sip2H2 due to the lack of an experimental AHf for that compound—also differ from one another quite substantially. Although one of them produces excellent agreement with experiment, the others differ from the observed value by up to 20 kcal-mol. Note also that some of the experimental AHf values for these silicon compounds have large uncertainties. [Pg.184]

The metal itself, having an appreciable vapour pressure, is also toxic, and produces headaches, tremors, inflammation of the bladder and loss of memory. The best documented case is that of Alfred Stock (p. 151) whose constant use of mercury in the vacuum lines employed in his studies of boron and silicon hydrides, caused him to suffer for many years. The cause was eventually recognized and it is largely due to Stock s publication in 1926 of details of his experiences that the need for care and adequate ventilation is now fully appreciated. [Pg.1225]

Amorphous silicon modules experience a conversion efficiency loss of about 10 percent when initially exposed to sunlight, but then stabilize at the reduced figure. The mechanism for this reduction is being actively investigated, but is still not well understood. Individual modules made with other PV materials do not exliibit such loss of conversion efficiency, but combinations of modules in arrays do exhibit systematic reductions in power output over their lifetimes. Estimated at about 1 percent per year on average, based on data to date, these reductions are most likely associated with deteriorating electrical connections and non-module electrical components. [Pg.1059]

When the experiment has been completed, clean the capillary as described above and then store it by inserting through a bored cork (or silicone rubber bung — normal rubber bungs which contain sulphur must be avoided) which is then placed in a test-tube containing a little pure mercury. Lower the mercury reservoir until drops no longer issue from the capillary, then push the end of the capillary into the mercury pool. [Pg.617]

It is very simple to perform batch fermentation in a small flask with a volume of say 200 ml. Now our target is to use a 2 litre B. Braun fermenter. All accessories are shown in Figure 10.5. The fermentation vessel only, as shown in Figure 10.6, with about 250 ml of media without any accessories but with some silicon tubing attached with a filter for ventilation is autoclaved at a 131 °C for 10 minutes at 15psig.9 After that, the system is handled with special care and all accessories attached. Media is separately sterilised and pumped into the vessel. Inoculum is transferred and the batch experiment is started right after the inoculation of seed culture. An initial sample is withdrawn for analysis. [Pg.258]


See other pages where Silicon experiments is mentioned: [Pg.374]    [Pg.197]    [Pg.63]    [Pg.374]    [Pg.197]    [Pg.63]    [Pg.122]    [Pg.2396]    [Pg.151]    [Pg.533]    [Pg.612]    [Pg.543]    [Pg.248]    [Pg.469]    [Pg.663]    [Pg.843]    [Pg.139]    [Pg.141]    [Pg.283]    [Pg.384]    [Pg.256]    [Pg.258]    [Pg.403]    [Pg.444]    [Pg.118]    [Pg.202]    [Pg.702]    [Pg.94]    [Pg.146]    [Pg.31]    [Pg.1067]    [Pg.133]    [Pg.156]   


SEARCH



Pressurization experiments, silicon

© 2024 chempedia.info