Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separators crushing

In order to prepare standard mineral mixtures, pyrite (Py), pyrrhotite (Po), chalcopyrite (Cp), sphalerite (Sp), siderite (Sid), dolomite (Dol), calcite (Cal) and quartz (Qz) were acquired as pure mineral samples through a specialized distributor (Minerobec, Canada). These 8 pure minerals were further cleaned under a binocular microscope and separately crushed to reach 95% under 150pm (typical tailings grain size distribution e.g. Aubertin et al. 2002). Each pure mineral powder was characterized thereafter with a series of chemical and mineralogical techniques. More details can be found in Bouzahzah et al. (2008). The relative density of each mineral specimen were measured with an He pycnometer and are... [Pg.327]

A screen surface can be formed by assembling a number of separate flat or round bars. The huge flat or sloping screens (grizzlies) used for separating crushed ores in mineral processing works are often made in this way. [Pg.81]

A very important but rather complex application of surface chemistry is to the separation of various types of solid particles from each other by what is known as flotation. The general method is of enormous importance to the mining industry it permits large-scale and economic processing of crushed ores whereby the desired mineral is separated from the gangue or non-mineral-containing material. Originally applied only to certain sulfide and oxide ores. [Pg.471]

Prior to about 1920, flotation procedures were rather crude and rested primarily on the observation that copper and lead-zinc ore pulps (crushed ore mixed with water) could be benefacted (improved in mineral content) by treatment with large amounts of fatty and oily materials. The mineral particles collected in the oily layer and thus could be separated from the gangue and the water. Since then, oil flotation has been largely replaced by froth or foam flotation. Here, only minor amounts of oil or surfactant are used and a froth is formed by agitating or bubbling air through the suspension. The oily froth or foam is concentrated in mineral particles and can be skimmed off as shown schematically in Fig. XIII-4. [Pg.472]

Naphthyl Acetate. CHgCOOCi H,. Dissolve 1 g. of pure 2-naphtnol in 5 ml. (r8 mols.) of 10% sodium hydroxide solution as before, add 10 g. of crushed ice, and i-i ml. (1-14 g., 1 5 mols.) of acetic anhydride. Shake the mixture vigorously for about 10-15 minutes the 2-naphthyl acetate separates as colourless crystals. Filter at the pump, wash with water, drain, and dry thoroughly. Yield of crude material, 1-4 g. (theoretical). Recrystallise from petroleum (b.p. 60-80 ), from which, on cooling and scratching, the 2-naphthyl acetate separates as colourless crystals, m.p, 71 yield, 10 g. [Pg.110]

Place 0 -5 g. of 3 4 5 triiodobenzoyl chloride in a small test-tube, add 0 -25 ml. of the alcohol - ether and heat the mixture gently over a micro burner until the evolution of hydrogen chloride ceases (3-5 minutes). Pour the molten mass into 10 ml. of 20 per cent, alcohol to which crushed ice has been added. Some derivatives solidify instantly those which separate as oils change to solids in a few minutes without further manipulation. Recrystallise from rectified spirit (use 50 per cent, alcohol for esters of methyl and butyl carbitol ). [Pg.265]

Place 125 ml. of concentrated ammonia solution (sp. gr. 0-88) in a 600 ml. beaker and surround the latter with crushed ice. Stir the ammonia solution mechanically, and introduce the n-caproyl chloride slowly by means of a suitably supported separatory funnel with bent stem. The rate of addition must be adjusted so that no white fumes are lost. The amide separates immediately. Allow to stand in the ice water for 15 minutes after all the acid chloride has been introduced. Filter oflF the amide at the pump use the flltrate to assist the transfer of any amide remaining in the beaker to the Alter (2). Spread the amide on sheets of Alter or drying paper to dry in the air. The crude n-capro-amide (30 g.) has m.p. 98-99° and is sufficiently pure for conversion into the nitrile (Section 111,112) (3). Recrystallise a small quantity of the amide by dissolving it in the minimum volume of hot water and allowing the solution to cool dry on filter paper in the air. Pure n-caproamide has m.p. 100°. [Pg.404]

Pour the reaction mixture cautiously into 400 g. of crushed ice and acidify it in the cold by the addition of a solution prepared by adding 55 ml. of concentrated sulphuric acid to 150 ml. of water and then coohng to 0°. Separate the ether layer and extract the aqueous layer twice with 50 ml. portions of ether. Dry the combined ethereal solutions over 50 g. of anhydrous potassium carbonate and distil the filtered solution thror h a Widmer column (Figs. II, 17, 1 and II, 24, 4). Collect separately the fraction boihng up to 103°, and the dimethylethynyl carbinol at 103-107° Discard the high boiling point material. Dry the fraction of low boihng point with anhydrous potassium carbonate and redistil. The total 3 ield is 75 g. [Pg.468]

The apparatus required is similar to that described for Diphenylmelhane (Section IV,4). Place a mixture of 200 g. (230 ml.) of dry benzene and 40 g. (26 ml.) of dry chloroform (1) in the flask, and add 35 g. of anhydrous aluminium chloride in portions of about 6 g. at intervals of 5 minutes with constant shaking. The reaction sets in upon the addition of the aluminium chloride and the liquid boils with the evolution of hydrogen chloride. Complete the reaction by refluxing for 30 minutes on a water bath. When cold, pour the contents of the flask very cautiously on to 250 g. of crushed ice and 10 ml. of concentrated hydrochloric acid. Separate the upper benzene layer, dry it with anhydrous calcium chloride or magnesium sulphate, and remove the benzene in a 100 ml. Claisen flask (see Fig. II, 13, 4) at atmospheric pressure. Distil the remaining oil under reduced pressure use the apparatus shown in Fig. 11,19, 1, and collect the fraction b.p. 190-215°/10 mm. separately. This is crude triphenylmethane and solidifies on cooling. Recrystallise it from about four times its weight of ethyl alcohol (2) the triphenylmethane separates in needles and melts at 92°. The yield is 30 g. [Pg.515]

Procedure 1. Dissolve 1 g. of the compound in 5 ml. of chloroform in a test-tube and cool in ice. Add 5 ml. of chlorosulphonic acid CA UTION in handhng) dropwise and with shaking. When the initial evolution of hydrogen chloride subsides, remove the reaction mixture from the ice and, after 20 minutes, pour it into a 50 ml. beaker filled with crushed ice. Separate the chloroform layer, wash it well with water, and evaporate the solvent. Recrystallise the residual aryl sulphonyl chloride from light petroleum (b.p. 40-60°), chloroform or benzene this is not essential for conversion into the sulphonamide. [Pg.543]

The p-bromoaniline separates as an oil, which soon sohdifies. Filter at the pump and wash with cold water. Purify the crude p-bromoanihne aa follows. Dissolve it in a mixture of 120 ml. of water and 75 ml. of concentrated hydrochloric acid, add 1-2 g. of decolourising carbon, and warm on a water bath for 10 minutes. Filter through a fluted paper or through two thicknesses of filter paper on a Buchner funnel. Pour the filtrate slowly and with vigorous stirring into a mixture of 60 ml. of 10 per cent, sodium hydroxide solution and 100 g. of crushed ice. Thep-bromo-aniline crystallises out. Filter, etc. as in Method 1. The yield is 11 5 g. [Pg.581]

In a 500 ml. bolt-head flask, provided with a mechanical stirrer, place 70 ml. of oleum (20 per cent. SO3) and heat it in an oil bath to 70°. By means of a separatory funnel, supported so that the stem is just above the surface of the acid, introduce 41 g. (34 ml.) of nitrobenzene slowly and at such a rate that the temperature of the well-stirred mixture does not rise above 100-105°. When all the nitrobenzene has been introduced, continue the heating at 110-115° for 30 minutes. Remove a test portion and add it to the excess of water. If the odour of nitrobenzene is still apparent, add a further 10 ml. of fuming sulphuric acid, and heat at 110-115° for 15 minutes the reaction mixture should then be free from nitrobenzene. Allow the mixture to cool and pour it with good mechanical stirring on to 200 g. of finely-crushed ice contained in a beaker. AU the nitrobenzenesulphonic acid passes into solution if a little sulphone is present, remove this by filtration. Stir the solution mechanically and add 70 g. of sodium chloride in small portions the sodium salt of m-nitro-benzenesulphonic acid separates as a pasty mass. Continue the stirring for about 30 minutes, allow to stand overnight, filter and press the cake well. The latter will retain sufficient acid to render unnecessary the addition of acid in the subsequent reduction with iron. Spread upon filter paper to dry partially. [Pg.589]

Dissolve 36 g. of p-toluidine in 85 ml. of concentrated hydrochloric acid and 85 ml. of water contained in a 750 ml. conical flask or beaker. Cool the mixture to 0° in an ice-salt bath with vigorous stirring or shaking and the addition of a httle crushed ice. The salt, p-toluidine hydrochloride, will separate as a finely-divided crystalline precipitate. Add during 10-15 minutes a solution of 24 g. of sodium nitrite in 50 ml. of water (1) shake or stir the solution well during the diazotisation, and keep the mixture at a temperature of 0-5° by the addition of a httle crushed ice from time to time. The hydrochloride wUl dissolve as the very soluble diazonium salt is formed when ah the nitrite solution has been introduced, the solution should contain a trace of free nitrous acid. Test with potassium iodide - starch paper (see Section IV,60). [Pg.600]

Add 101 g. (55 ml.) of concentrated sulphuric acid cautiously to 75 ml. of water contained in a 1 htre beaker, and introduce 35 g. of finely-powdered wi-nitroaniline (Section IV,44). Add 100-150 g. of finely-crushed ice and stir until the m-nitroaniUne has been converted into the sulphate and a homogeneous paste results. Cool to 0-5° by immersion of the beaker in a freezing mixture, stir mechanically, and add a cold solution of 18 g. of sodium nitrite in 40 ml. of water over a period of 10 minutes until a permanent colour is immediately given to potassium iodide - starch paper do not allow the temperature to rise above 5-7° during the diazotisation. Continue the stirring for 5-10 minutes and allow to stand for 5 minutes some m-nitrophenjddiazonium sulphate may separate. Decant the supernatant Uquid from the solid as far as possible. [Pg.614]

P-Naphthyl acetate. Dissolve 5 0 g. of p-naphthol in 25 ml. of 10 per cent, sodium hydroxide solution in a 250 ml. reagent bottle, add 60 g. of crushed ice, and 5-7 g. (5 -5 ml.) of acetic anhydride. Shake vigorously for 10-15 minutes the p-naphth acetate separates as colourless crystals. Filter with suction, wash with water, drain and dry in the air. Recrystallise from light petroleum (b.p. 60-80°) or from dilute alcohol. The yield of pure product, m.p. 71°, is 6-5 g. [Pg.669]

Dissolve 1 0 g. of the compound in 5 ml. of dry chloroform in a dry test-tuhe, cool to 0°, and add dropwise 5g. (2-8 ml.) of redistilled chloro-sulphonic acid. When the evolution of hydrogen chloride subsides, allow the reaction mixture to stand at room temperature for 20 minutes. Pour the contents of the test-tube cautiously on to 25 g. of crushed ice contained in a small beaker. Separate the chloroform layer and wash it with a httle cold water. Add the chloroform layer, with stirring, to 10 ml. of concentrated ammonia solution. After 10 minutes, evaporate the chloroform on a water bath, cool the residue and treat it with 5 ml. of 10 per cent, sodium hydroxide solution the sulphonamide dissolves as the sodium derivative, RO.CgH4.SO,NHNa. Filter the solution to remove any insoluble matter (sulphone, etc.), acidify the filtrate with dilute hydrochloric acid, and cool in ice water. Collect the sulphonamide and recrystallise it from dilute alcohol. [Pg.672]

Dissolve 0 01 mol (or 1 g. if the molecular weight is unknown) of the compound in 5 ml. of 3A sodium hydroxide solution, add 10-20 g. of crushed ice followed by 1-5 g. (1-5 ml.) of acetic anh3 dride. Shake the mixture vigorously for 30-60 seconds. The acetate separates in a practically pure condition either at once or after acidification by the addition of a mineral acid. Collect the acetyl derivative, and recrystallise it from hot water or from dilute alcohol. [Pg.682]


See other pages where Separators crushing is mentioned: [Pg.10]    [Pg.9]    [Pg.57]    [Pg.170]    [Pg.138]    [Pg.10]    [Pg.9]    [Pg.57]    [Pg.170]    [Pg.138]    [Pg.246]    [Pg.141]    [Pg.143]    [Pg.181]    [Pg.228]    [Pg.308]    [Pg.240]    [Pg.252]    [Pg.253]    [Pg.256]    [Pg.259]    [Pg.324]    [Pg.359]    [Pg.419]    [Pg.492]    [Pg.506]    [Pg.517]    [Pg.570]    [Pg.586]    [Pg.605]    [Pg.611]    [Pg.623]    [Pg.624]    [Pg.636]    [Pg.668]    [Pg.669]    [Pg.680]    [Pg.698]    [Pg.717]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Crushing

© 2024 chempedia.info