Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semivolatile organic compounds SVOCs

The principal PIC for penta and penta-treated wood would include volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), dioxins and furans, as well as SOj, COj, NO, and HCl. Penta would be expected to have undergone a very high destruction efficiency (DRE) during the fire (> 99.99%). Among the VOC emissions, the following chemicals likely contributed to air pollution problems benzene, bromobenzene, chloromethane, 1,3-butadiene, iodomethane, acetone, chloroform, and 1,2-dichloroethane. [Pg.336]

Anolyte gas was measured for CO, S02, VOCs, semivolatile organic compounds (SVOCs), agent, and Schedule 2 decomposition compounds. [Pg.84]

This technology can treat materials contaminated with a wide range of organic contaminants, including solvents, volatile organic compounds (VOCs), and semivolatile organic compounds (SVOCs). CFBC is particularly suited for the treatment of media contaminated with polychlorinated biphenyls (PCBs). [Pg.463]

In 1997, it was estimated that it would cost approximately 30 to 50 per ton to remediate soil contaminated with volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) using HeatTrode technology. The computer model estimate was based on inputs from testing performed by the University of Buffalo and the United States Air Force (D17162K,... [Pg.503]

The PetroClean bioremediation system treats biodegradable contaminants (i.e., gasoline, diesel fuel, aviation fuel, solvents, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH), and other organic compounds in soils and groundwater. [Pg.644]

FACT is an ex situ process that treats all biodegradable semivolatile organics compounds (SVOCs) including petroleum-contaminated soil. It has an advantage over other bioremediation technologies such as landfarming, in that it requires less space to degrade contaminants. [Pg.647]

The HRUBOUT process is a mobile in situ or ex situ thermal desorption process designed to remediate soils contaminated with volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs). For the ex situ process, excavated soil is treated in a soil pile or in a specially designed container. Heated compressed air is injected into the soil, evaporating soil moisture and removing volatile and semivolatUe contaminants. Heavier hydrocarbons are oxidized as the soil temperature is increased to higher levels over an extended period of time. The vapor is collected and transferred to a thermal oxidizer (incinerator) for destruction. [Pg.662]

Soil vapor extraction (SVE) (also called vacuum extraction, soil venting, or in situ vaporization) is used to remove volatile organic compounds (VOCs) and some semivolatile organic compounds (SVOCs) from contaminated soil. SVE systems apply a vacuum in an extraction well to remove soil vapors. This creates a negative pressure that causes the volatilization of some chemicals in the vadose zone of the soil. The technology has also been used to extract non-aqueous-phase liquid (NAPE). Contaminant volatilization is often enhanced through the use of air injection wells to supply unsaturated air into the vadose zone of the soil. [Pg.688]

During bench-scale studies on ACT using sediments from the New Bedford Harbor Superfund Site, the Toxicity Characteristic Leaching Procedure (TCLP) concentrations of many contaminants increased or remained unchanged following treatment. Based on these results, researchers stated that solidification/stabilization methods such as ACT were not appropriate for the treatment of polychlorinated biphenyls (PCBs) or semivolatile organic compounds (SVOCs) at the site. The study also indicated that the compressive strength of ACT [45 to 80 pounds per square inch (psi)] was relatively low compared to other solidification/stabilization materials that were tested. [Pg.767]

Chemical contaminants for which full-scale treatment data exist include primarily volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs). These SVOCs include polychlorinated biphenyls (PCBs), pentachlorophenol (PCP), pesticides, and herbicides. Extremely volatile metals, such as mercury and lead, can be removed by higher temperature thermal desorption systems. The technology has been applied to refinery wastes, coal tar wastes, wood-treating wastes, creosote-contaminated soils, hydrocarbon-contaminated soils, mixed (radioactive and hazardous) wastes, synthetic mbber processing wastes, and paint wastes. [Pg.1051]

This technology has been used to treat polychlorinated biphenyls (PCBs), halogenated and nonhalogenated solvents, semivolatile organic compounds (SVOCs), polynuclear aromatic hydrocarbons (PAHs), pesticides, herbicides, fuel oils, benzene, toluene, ethylbenzene, and xylenes (BTEX), and mercury. This system has also treated Resource Conservation and Recovery Act (RCRA) hazardous wastes such as petroleum refinery wastes and multisource leachate treatment residues to meet RCRA Land Disposal Restrictions (LDR) treatment standards. [Pg.1118]

Halogenated semivolatile organic compounds (SVOCs) — Halogenated SVOCs may also contain molecules of chlorine, bromine, iodine, and/or fluorine. The degree of volatilization from halogenated SVOCs is much less than for HVOCs. The most common types of halogenated SVOCs include polychlorinated biphenyl (PCBs), pen-tachlorophenol (PCP), and hexachlorobenzene. [Pg.43]

Clausen, P.A. and Wolkoff, P. (1997b) Evaluation of automatic thermal desorption-capillary GC for determination of semivolatile organic compounds (SVOCs) in indoor air. Journal of High Resolution Chromatography, 20, 99-108. [Pg.42]

Many persistent organic pollutants (POPs) are semivolatile organic compounds (SVOCs) having vapour pressures (see Box 4.14) between 10 and 10 7Pa. At these vapour pressures SVOCs can evaporate (volatilize) from soil, water or vegetation into the atmosphere. However, as vapour pressure is temperature dependent (see Box 4.14), it follows that at lower temperatures (lower vapour pressures)... [Pg.274]


See other pages where Semivolatile organic compounds SVOCs is mentioned: [Pg.564]    [Pg.627]    [Pg.320]    [Pg.373]    [Pg.431]    [Pg.434]    [Pg.490]    [Pg.507]    [Pg.661]    [Pg.682]    [Pg.745]    [Pg.770]    [Pg.771]    [Pg.936]    [Pg.962]    [Pg.976]    [Pg.977]    [Pg.1003]    [Pg.1071]    [Pg.43]    [Pg.68]    [Pg.80]    [Pg.461]    [Pg.55]    [Pg.455]    [Pg.3]    [Pg.38]   
See also in sourсe #XX -- [ Pg.168 , Pg.171 ]

See also in sourсe #XX -- [ Pg.781 , Pg.782 ]




SEARCH



SVOCs compounds

Semivolatile

Semivolatile compounds

Semivolatile organic compounds

© 2024 chempedia.info