Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductors, electron-hole

A Molecular Excited State A Semiconductor Electron-hole Pair... [Pg.356]

Figure 5. Comparison of a molecular excited state with a semiconductor electron-hole pair. Figure 5. Comparison of a molecular excited state with a semiconductor electron-hole pair.
In an irradiated semiconductor, electron-hole pairs are generated according to the band gap excitation. Therefore, when the semiconductor is area-selectively irradiated, electron-hole pairs are generated exclusively in the irradiated part. Thus generated electrons and holes undergo reactions at the electrode/ electrolyte interface and such reactions are observed as area-selective reactions. [Pg.375]

When a semiconductor is illuminated with the band-gap radiation, excess electrons and holes are photo-created. They can form free excitons or be trapped by ionized impurities, but their ultimate fate is their annihilation by thermal or radiative recombination. The formation of free excitons will be discussed in Sect. 3.3.2, but in direct band-gap semiconductors, electron-hole radiative recombination can also occur at an energy close to Eg if the pumping beam is kept at a low level. This can provide an accurate determination of Eg [87],... [Pg.71]

Semiconductor (electron-hole plasma) GaAs 890 E- beam, laser pumping... [Pg.1723]

Photosensitivity Many corrosion products possess semiconducting properties. When interacting with photons (see Chapter 1, Volume 6) of higher energy than the band gap of the semiconductor, electron-hole pairs are generated, which change the conditions for chemical reactions in different ways. Yet, there is not ample evidence of photosensitivity in atmospheric corrosion processes. One... [Pg.197]

Irradiation of a semiconductor with light of quantum energy greater than the band gap can lead to electron-hole separation. This can affect adsorption and lead to photocatalyzed or photoassisted reactions [187]. See Section XVIII-9F for some specifics. [Pg.718]

In n type semiconductors, electrons are tire majority carriers. Holes will also be present tlirough accidental incoriioration of acceptor impurities or, more importantly, tlirough tlie intentional creation of electron-hole pairs. Holes in n type and electrons in p type semiconductors are minority carriers. [Pg.2883]

There are many ways of increasing tlie equilibrium carrier population of a semiconductor. Most often tliis is done by generating electron-hole pairs as, for instance, in tlie process of absorjition of a photon witli h E. Under reasonable levels of illumination and doping, tlie generation of electron-hole pairs affects primarily the minority carrier density. However, tlie excess population of minority carriers is not stable it gradually disappears tlirough a variety of recombination processes in which an electron in tlie CB fills a hole in a VB. The excess energy E is released as a photon or phonons. The foniier case corresponds to a radiative recombination process, tlie latter to a non-radiative one. The radiative processes only rarely involve direct recombination across tlie gap. Usually, tliis type of process is assisted by shallow defects (impurities). Non-radiative recombination involves a defect-related deep level at which a carrier is trapped first, and a second transition is needed to complete tlie process. [Pg.2883]

Light is generated in semiconductors in the process of radiative recombination. In a direct semiconductor, minority carrier population created by injection in a forward biased p-n junction can recombine radiatively, generating photons with energy about equal to E. The recombination process is spontaneous, individual electron-hole recombination events are random and not related to each other. This process is the basis of LEDs [36]. [Pg.2890]

Brus L E 1984 Electron-electron and electron-hole Interactions In small semiconductor crystallites the size dependence of the lowest excited electronic state J. Chem. Phys. 80 4403-9... [Pg.2921]

Photovoltaic Devices. For many inorganic semiconductors, absorption of light can be used to create free electrons and holes. In an organic semiconducting soHd, however, absorption of a photon leads to the formation of a bound electron—hole pair. Separation of this pair in an electric field can... [Pg.244]

The main advantages that compound semiconductor electronic devices hold over their siUcon counterparts He in the properties of electron transport, excellent heterojunction capabiUties, and semi-insulating substrates, which can help minimise parasitic capacitances that can negatively impact device performance. The abiUty to integrate materials with different band gaps and electronic properties by epitaxy has made it possible to develop advanced devices in compound semiconductors. The hole transport in compound semiconductors is poorer and more similar to siUcon. Eor this reason the majority of products and research has been in n-ty e or electron-based devices. [Pg.370]

Where b is Planck s constant and m and are the effective masses of the electron and hole which may be larger or smaller than the rest mass of the electron. The effective mass reflects the strength of the interaction between the electron or hole and the periodic lattice and potentials within the crystal stmcture. In an ideal covalent semiconductor, electrons in the conduction band and holes in the valence band may be considered as quasi-free particles. The carriers have high drift mobilities in the range of 10 to 10 cm /(V-s) at room temperature. As shown in Table 4, this is the case for both metallic oxides and covalent semiconductors at room temperature. [Pg.357]

A hst of some impurity semiconductors is given in Table 5. Because impurity atoms introduce new localized energy levels for electrons that are intermediate between the valence and conduction bands, impurities strongly influence the properties of semiconductors. If the new energy levels are unoccupied and He close to the top of the valence band, electrons are easily excited out of the filled band into the new acceptor levels, leaving electron holes... [Pg.357]

Copper(I) oxide [1317-39-1] is 2lp-ty e semiconductor, Cu2 0, in which proper vacancies act as acceptors to create electron holes that conduct within a narrow band in the Cu i7-orbitals. Nickel monoxide [1313-99-17, NiO, forms a deficient semiconductor in which vacancies occur in cation sites similar to those for cuprous oxide. For each cation vacancy two electron holes must be formed, the latter assumed to be associated with regular cations ([Ni " h = Semiconduction results from the transfer of positive charges from cation to cation through the lattice. Conduction of this type is similar... [Pg.358]

A schematic representation of a PR apparatus is shown in Figure 2. In PR a pump beam (laser or other light source) chopped at frequency 2 creates photo-injected electron-hole pairs that modulate the built-in electric field of the semiconductor. The photon energy of the pump beam must be larger than the lowest energy gap of the material. A typical pump beam for measurements at or below room temperature is a 5-mW He-Ne laser. (At elevated temperatures a more powerful pump must be employed.)... [Pg.389]

Fig. 4.7. A semiconductor detector operated as a pin diode with a reverse voltage or bias. An incident X-ray photon ultimately produces a series of electron-hole pairs. They are "swept out" by the bias field of-500 V- electrons in the direction ofthe n-layer holes in the direction ofthe p-layer. Thus, a small charge pulse is produced after [4.21],... Fig. 4.7. A semiconductor detector operated as a pin diode with a reverse voltage or bias. An incident X-ray photon ultimately produces a series of electron-hole pairs. They are "swept out" by the bias field of-500 V- electrons in the direction ofthe n-layer holes in the direction ofthe p-layer. Thus, a small charge pulse is produced after [4.21],...

See other pages where Semiconductors, electron-hole is mentioned: [Pg.56]    [Pg.81]    [Pg.430]    [Pg.19]    [Pg.88]    [Pg.56]    [Pg.81]    [Pg.430]    [Pg.19]    [Pg.88]    [Pg.204]    [Pg.2881]    [Pg.2895]    [Pg.193]    [Pg.292]    [Pg.378]    [Pg.410]    [Pg.428]    [Pg.469]    [Pg.362]    [Pg.367]    [Pg.320]    [Pg.356]    [Pg.116]    [Pg.116]    [Pg.80]    [Pg.82]    [Pg.374]   


SEARCH



Electron hole

Electron-hole separation, metallized semiconductor powder

Electronic holes

Electronic semiconductor

Electrons and Holes in Semiconductors

Electrons semiconductors

Electron—hole pairs semiconductor

Holes semiconductors

Semiconductor electron-hole recombination

Semiconductor powder metallized, electron-hole

The electron and hole concentrations in intrinsic semiconductors

© 2024 chempedia.info