Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acceptor levels

All teclmologically important properties of semiconductors are detennined by defect-associated energy levels in the gap. The conductivity of pure semiconductors varies as g expf-A CgT), where is the gap. In most semiconductors with practical applications, the size of the gap, E 1-2 eV, makes the thennal excitation of electrons across the gap a relatively unimportant process. The introduction of shallow states into the gap through doping, with either donors or acceptors, allows for large changes in conductivity (figure C2.16.1). The donor and acceptor levels are typically a few meV below the CB and a few tens of meV above the VB, respectively. The depth of these levels usually scales with the size of the gap (see below). [Pg.2882]

A gap level is called an acceptor level if tlie defect is neutral when tlie state is empty (no electron). It is called a donor level if tlie defect is neutral when tlie state is occupied (one electron). The foniier is often labelled (0 / -) and tlie latter (-t / 0), where tlie first (second) sign refers to tlie charge of tlie defect when no electron (one electron) is present. Double or triple acceptor and donor levels are similarly labelled. [Pg.2884]

Figure C2.16.7. A schematic energy band diagram of a p-n junction witliout external bias (a) and under forward bias (b). Electrons and holes are indicated witli - and + signs, respectively. It should be remembered tliat tlie energy of electrons increases by moving up, holes by moving down. Electrons injected into tlie p side of tlie junction become minority carriers. Approximate positions of donor and acceptor levels and tlie Feniii level, are indicated. Figure C2.16.7. A schematic energy band diagram of a p-n junction witliout external bias (a) and under forward bias (b). Electrons and holes are indicated witli - and + signs, respectively. It should be remembered tliat tlie energy of electrons increases by moving up, holes by moving down. Electrons injected into tlie p side of tlie junction become minority carriers. Approximate positions of donor and acceptor levels and tlie Feniii level, are indicated.
The impurity atoms used to form the p—n junction form well-defined energy levels within the band gap. These levels are shallow in the sense that the donor levels He close to the conduction band (Fig. lb) and the acceptor levels are close to the valence band (Fig. Ic). The thermal energy at room temperature is large enough for most of the dopant atoms contributing to the impurity levels to become ionized. Thus, in the -type region, some electrons in the valence band have sufficient thermal energy to be excited into the acceptor level and leave mobile holes in the valence band. Similar excitation occurs for electrons from the donor to conduction bands of the n-ty e material. The electrons in the conduction band of the n-ty e semiconductor and the holes in the valence band of the -type semiconductor are called majority carriers. Likewise, holes in the -type, and electrons in the -type semiconductor are called minority carriers. [Pg.126]

Cadmium Sulfide Photoconductor. CdS photoconductive films are prepared by both evaporation of bulk CdS and settHng of fine CdS powder from aqueous or organic suspension foUowed by sintering (60,61). The evaporated CdS is deposited to a thickness from 100 to 600 nm on ceramic substates. The evaporated films are polycrystaUine and are heated to 250°C in oxygen at low pressure to increase photosensitivity. Copper or silver may be diffused into the films to lower the resistivity and reduce contact rectification and noise. The copper acceptor energy level is within 0.1 eV of the valence band edge. Sulfide vacancies produce donor levels and cadmium vacancies produce deep acceptor levels. [Pg.431]

The variations in D and D and the much larger value for In show the limitations of a simple hydrogen atom model. Other elements, particularly transition metals, tend to introduce several deep levels in the energy gap. For example, gold introduces a donor level 0.54 eV below D and an acceptor level 0.35 eV above D in siHcon. Because such impurities are effective aids to the recombination of electrons and holes, they limit carrier lifetime. [Pg.345]

A hst of some impurity semiconductors is given in Table 5. Because impurity atoms introduce new localized energy levels for electrons that are intermediate between the valence and conduction bands, impurities strongly influence the properties of semiconductors. If the new energy levels are unoccupied and He close to the top of the valence band, electrons are easily excited out of the filled band into the new acceptor levels, leaving electron holes... [Pg.357]

Sihcon carbide can be doped using boron [7440-42-8] to provide acceptor levels within the band gap (0.3 eV above the valence band), thus making it a -type conductor, or nitrogen can be added to provide donor levels and n-ty e conduction (0.07 eV) below the conduction band. [Pg.358]

Donor and acceptor levels are the active centers in most phosphors, as in zinc sulfide [1314-98-3] ZnS, containing an activator such as Cu and various co-activators. Phosphors are coated onto the inside of fluorescent lamps to convert the intense ultraviolet and blue from the mercury emissions into lower energy light to provide a color balance closer to daylight as in Figure 11. Phosphors can also be stimulated directly by electricity as in the Destriau effect in electroluminescent panels and by an electron beam as in the cathodoluminescence used in television and cathode ray display tubes and in (usually blue) vacuum-fluorescence alphanumeric displays. [Pg.421]

Therefore, there could exist rich defects in Ba3BP30i2, BaBPOs and Ba3BP07 powders. From the point of energy-band theory, these defects will create defect energy levels in the band gap. It can be suggested that the electrons and holes introduced by X-ray excitation in the host might be mobile and lead to transitions within the conduction band, acceptor levels, donor levels and valence band. Consequently, some X-ray-excited luminescence bands may come into being. [Pg.311]

Fig. 4. Energy spectrum of a crystal with acceptor level A and donor level D representing a chemisorbed particle. Fig. 4. Energy spectrum of a crystal with acceptor level A and donor level D representing a chemisorbed particle.
Relative donor and acceptor levels cannot be determined directly... [Pg.305]

Figure 1 shows a deep level transient spectroscopy (DLTS) (Lang, 1974) spectrum from a Au-diffused, n-type Si sample before and after hydrogenation of 300°C for 2h (Pearton and Tavendale, 1982a). The well-known Au acceptor level (Ec - 0.54 eV) was passivated to depths > 10 pm under these conditions and was only partially regenerated by a subsequent... [Pg.82]

Most of the other metal-related deep levels in Si are also passivated by reaction with hydrogen (Pearton, 1985). Silver, for example, gives rise in general to a donor level at Ee + 0.54 eV and an acceptor level at Ec - 0.54 e V (Chen and Milnes, 1980 Milnes, 1973). These levels are very similar to those shown by Au, Co and Rh and raise the question of whether Au might actually be introduced into all of the reported samples or a contaminant, or whether as discussed by several authors there is a similar core to these impurity centers giving rise to similar electronic properties (Mesli et al., 1987 Lang et al., 1980). This problem has not been adequately decided at this time. It has been... [Pg.84]

The final question we shall consider here has to do with the extrapolation of the solubility of hydrogen in silicon to lower temperatures. Extrapolation of a high-temperature Arrhenius line, e.g., from Fig. 11, would at best give an estimate of the equilibrium concentration of H°, or perhaps of all monatomic species, in intrinsic material the concentration of H2 complexes would not be properly allowed for, nor would the effects of Fermi-level shifts. Obviously the temperature dependence of the total dissolved hydrogen concentration in equilibrium with, say, H2 gas at one atmosphere, will depend on a number of parameters whose values are not yet adequately known the binding energy AE2 of two H° into H2 in the crystal, the locations of the hydrogen donor and acceptor levels eD, eA, respectively, etc. However, the uncertainties in such quantities are not so... [Pg.294]

For completeness it should be mentioned that the passivation of gold, presumably via the same AuH complex, has also been studied in p-type silicon, where it is the donor rather than the acceptor level of gold that is active (Hansen et al., 1984). Though no profiles were reported in this work, apparent hydrogen diffusion coefficients inferred by these authors are of the same order as the Pearton (1985) points of Fig. 16 at temperatures 110°C and below. [Pg.316]


See other pages where Acceptor levels is mentioned: [Pg.2886]    [Pg.126]    [Pg.435]    [Pg.345]    [Pg.356]    [Pg.421]    [Pg.153]    [Pg.332]    [Pg.484]    [Pg.29]    [Pg.35]    [Pg.160]    [Pg.162]    [Pg.259]    [Pg.260]    [Pg.450]    [Pg.235]    [Pg.162]    [Pg.914]    [Pg.1008]    [Pg.208]    [Pg.305]    [Pg.83]    [Pg.240]    [Pg.248]    [Pg.248]    [Pg.250]    [Pg.251]    [Pg.261]    [Pg.281]    [Pg.293]    [Pg.315]    [Pg.340]    [Pg.350]    [Pg.351]   
See also in sourсe #XX -- [ Pg.27 ]

See also in sourсe #XX -- [ Pg.275 ]

See also in sourсe #XX -- [ Pg.129 , Pg.139 , Pg.141 ]

See also in sourсe #XX -- [ Pg.312 ]

See also in sourсe #XX -- [ Pg.235 , Pg.255 ]

See also in sourсe #XX -- [ Pg.129 , Pg.139 , Pg.141 ]




SEARCH



Acceptor level in semiconductor

Acceptor surface level

Donor-acceptor energy levels

Donor-acceptor energy levels property, energies

Shallow acceptor level

© 2024 chempedia.info