Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubber fundamental mechanism

The temperature dependence of the Payne effect has been studied by Payne and other authors [28, 32, 47]. With increasing temperature an Arrhe-nius-like drop of the moduli is found if the deformation amplitude is kept constant. Beside this effect, the impact of filler surface characteristics in the non-linear dynamic properties of filler reinforced rubbers has been discussed in a review of Wang [47], where basic theoretical interpretations and modeling is presented. The Payne effect has also been investigated in composites containing polymeric model fillers, like microgels of different particle size and surface chemistry, which could provide some more insight into the fundamental mechanisms of rubber reinforcement by colloidal fillers [48, 49]. [Pg.5]

As discussed in section 6.2.2, the values of Young s modulus for isotropic glassy and semicrystalline polymers are typically two orders of magnitude lower than those of metals. These materials can be either brittle, leading to fracture at strains of a few per cent, or ductile, leading to large but non-recoverable deformation (see chapter 8). In contrast, for rubbers. Young s moduli are typically of order 1 MPa for small strains (fig. 6.6 shows that the load-extension curve is non-linear) and elastic, i.e. recoverable, extensions up to about 1000% are often possible. This shows that the fundamental mechanism for the elastic behaviour of rubbers must be quite different from that for metals and other types of solids. [Pg.178]

If chemically crosslinked rubber is considered a xerogel of a swollen network polymer, its viscoelastic properties exhibit fundamental mechanical properties [181]. Assuming that Gg in Eq. (1) is the modulus of the... [Pg.321]

The new interface model and the concept for the carbon black reinforcement proposed by the author fundamentally combine the structure of the carbon gel (bound mbber) with the mechanical behavior of the filled system, based on the stress analysis (FEM). As shown in Figure 18.6, the new model has a double-layer stmcture of bound rubber, consisting of the inner polymer layer of the glassy state (glassy hard or GH layer) and the outer polymer layer (sticky hard or SH layer). Molecular motion is strictly constrained in the GH layer and considerably constrained in the SH layer compared with unfilled rubber vulcanizate. Figure 18.7 is the more detailed representation to show molecular packing in both layers according to their molecular mobility estimated from the pulsed-NMR measurement. [Pg.522]

In particular it can be shown that the dynamic flocculation model of stress softening and hysteresis fulfils a plausibility criterion, important, e.g., for finite element (FE) apphcations. Accordingly, any deformation mode can be predicted based solely on uniaxial stress-strain measurements, which can be carried out relatively easily. From the simulations of stress-strain cycles at medium and large strain it can be concluded that the model of cluster breakdown and reaggregation for prestrained samples represents a fundamental micromechanical basis for the description of nonlinear viscoelasticity of filler-reinforced rubbers. Thereby, the mechanisms of energy storage and dissipation are traced back to the elastic response of tender but fragile filler clusters [24]. [Pg.621]

In Vienna, Mark published a number of fundamental papers. Their topics include polymerization mechanism (46, 47, 48), thermal polymerization (49, 50), polymerization kinetics (51), the effect of oxygen on polymerization (52), and measurement of molecular weight distribution (53). Guth and Mark expanded their modeling of extended and balled thread molecules to include rubber. The result of their studies was a series of very important papers in which the thermal effect on expansion and relaxation of rubber is explained (54, 55, 56). [Pg.78]

Physical and Mechanical Behavior of the Oils and SIN s. One of the most important properties of any polymer is its glass transition temperature. This defines its range of use, as well as a host of fundamental properties. This holds for IPN s and SIN s. In particular, for multiphase materials, the rubber phase must have a T below about -40°C if significant impact resistance is to be obtlined. [Pg.247]

The static and dynamic mechanical properties, creep recovery behaviour, thermal expansion and thermal conductivity of low-density foams made of blends of LDPE and EVA were studied as a function of the EVA content of the blends. These properties were compared with those of a foam made from a blend of EVA and ethylene-propylene rubber. A knowledge of the way in which the EVA content affects the behaviour of these blend foam materials is fundamental to obtaining a wide range of polyolefin foams, with similar density, suitable for different applications. 9 refs. [Pg.78]

From the viewpoint of the mechanics of continua, the stress-strain relationship of a perfectly elastic material is fully described in terms of the strain energy density function W. In fact, this relationship is expressed as a linear combination erf the partial derivatives of W with respect to the three invariants of deformation tensor, /j, /2, and /3. It is the fundamental task for a phenomenologic study of elastic material to determine W as a function of these three independent variables either from molecular theory or by experiment. The present paper has reviewed approaches to this task from biaxial extension experiment and the related data. The results obtained so far demonstrate that the kinetic theory of polymer network does not describe actual behavior of rubber vulcanizates. In particular, contrary to the kinetic theory, the observed derivative bW/bI2 does not vanish. [Pg.122]

It is interesting to consider hardness as an example of how mechanical tests for rubber have, or have not developed. Firstly, despite the very imprecise relationship with modulus and the lack of any fundamental significance, hardness measurements have continued to be used and even now new ones are being introduced. The far more sensible method of measuring force to produce a given deformation, which would also allow stress relaxation to be conveniently measured, has not been adopted. However, the instrumentation has been updated so that the old measure can be made with electrical transducers and fed directly to a computer. On the other hand, perhaps the fact that hardness is a non-destructive method that can be applied to virtually any product is justification that it should thrive. [Pg.119]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cyclized rubber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenolic structure renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxylic acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubility is controlled by chemical and polarity differences rather than molecular size. [Pg.118]

There is wide variety of vulcanisation agents and methods available for crosslinking rubber materials including peroxide, radiation, urethane, amine-boranes, and sulfur compounds [20]. Because of its superior mechanical and elastic properties, ease in use, and low cost, sulfur vulcanisation is the most widely used. Although vulcanisation with sulfur alone is not practical compared to the accelerated sulfur vulcanisation in terms of the slower cure rate and inferior physical properties of the end products, many fundamental aspects can be learned from such a simply formulated vulcanisation system. The use of sulfur alone to cure NR is typically inefficient, i.e., requiring 45-55 sulfur atoms per crosslink [21], and tends to produce a large portion of intramolecular (cyclic) crosslinks. However, such ineffective crosslink structures are of interest in the understanding of complex nature of vulcanisation reactions. [Pg.327]


See other pages where Rubber fundamental mechanism is mentioned: [Pg.665]    [Pg.230]    [Pg.692]    [Pg.168]    [Pg.115]    [Pg.178]    [Pg.187]    [Pg.154]    [Pg.1833]    [Pg.419]    [Pg.32]    [Pg.181]    [Pg.594]    [Pg.115]    [Pg.108]    [Pg.419]    [Pg.471]    [Pg.287]    [Pg.13]    [Pg.607]    [Pg.622]    [Pg.681]    [Pg.329]    [Pg.35]    [Pg.88]    [Pg.121]    [Pg.148]    [Pg.238]    [Pg.263]    [Pg.118]    [Pg.86]    [Pg.45]    [Pg.51]    [Pg.82]    [Pg.359]    [Pg.93]    [Pg.40]    [Pg.118]   
See also in sourсe #XX -- [ Pg.11 , Pg.178 ]




SEARCH



Rubbers mechanism

© 2024 chempedia.info