Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ribonucleic acid materials

Vimses are one of the smallest biological entities (except viroids and prions) that carry all the iaformation necessary for thek own reproduction. They are unique, differing from procaryotes and eucaryotes ia that they carry only one type of nucleic acid as genetic material, which can be transported by the vims from one cell to another. Vimses are composed of a shell of proteki enclosing a core of nucleic acid, either ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), that codes for vkal reproduction. The outer shell serves as a protective coat to keep the nucleic acid kitact and safe from enzymatic destmction. In addition to thek proteki coat, some vimses contain an outer covering known as an outer envelope. This outer envelope consists of a Hpid or polysaccharide material. [Pg.302]

Extracts from 152 plant species, representing 46 different families, were screened for effects on tobacco mosaic virus (TMV) replication in cucumber cotyledons. Twenty species have shown enough activity to warrant further study. Several members of the Caprifoliaceae family increased virus replication. An extract of Lonicera involucrata enlarged the virus lesions in local lesion hosts and produced a thirty fold increase in virus titer, but had no effect on virus replication in systemic hosts. The active material appears to affect the virus defense mechanism of local lesion hosts. An extract of common geranium is an active virus inhibitor. It inactivates TMV and TMV-RNA (ribonucleic acid) in vitro by forming non-infectious complexes. In vivo, it also inhibited starch lesion formation in cucumber cotyledons incited by TMV infection. [Pg.94]

Deoxyribonucleic acid (DNA, Fig. 3-13) is the genetic material of all organisms, including plants, animals, and microorganisms. (Some viruses lack DNA, but use RNA (ribonucleic acid) in its place.) DNA carries all the hereditary information of the organism and is therefore replicated and passed from parent to offspring. RNA is formed on DNA in the nucleus of the... [Pg.61]

A detailed discussion of the modes of occurrence and biological importance of the polynucleotides is outside the scope of this article. However, in examining the structures of polynucleotides, it is necessary to take into consideration the origins of the materials studied. The pioneer researches of Caspersson114 indicated that deoxyribonucleic acids are present exclusively in the nucleus, whereas ribonucleic acids are found chiefly in the cytoplasm and only to a small extent in the nucleus. This general outline of the distribution of nucleic acids within the cell has been confirmed and extended by more recent work,116 and it has been possible to isolate both types of nucleic acid from different cellular fractions of the same tissue.116... [Pg.307]

That the cytoplasmic nucleic acid is present in the mitochondria, the micro-eomes, and the non-sedimentable cell-sap is also known.117 The nuclear ribonucleic acid has been reported to be associated with the nucleolus and the chromosomes.118 It is known, moreover, that the ribonucleic acids of the different parts of the cell are biochemically distinct, since they become labeled with P32 at different rates.119 In liver cells, the nuclear ribonucleic acid is also chemically distinct from the cytoplasmic material, since the two differ in composition.120 It is clear, therefore, that ribonucleic acids prepared from whole cells are likely to be mixtures of various molecular species. [Pg.308]

In a number of methods, isolation of the nucleoprotein complex (stage 2) is avoided. In the isolation of ribonucleic acid from beef pancreas,1241 nuclear material and cell debris are removed from a normal-saline extract of the minced tissue, which is then brought to half-saturation with sodium chloride (to dissociate the protein from the nucleic acid). After removal of the protein, the nucleic acid is precipitated with alcohol. However, the suggestion has been made126 that it is more satisfactory to isolate the nucleoprotein first, and this has been carried out, for instance, in the extraction of the ribonucleic acid from fowl sarcoma GRCH 15.126 Nucleoprotein complexes have also been isolated from baker s yeast127 and have been separated into various fractions, the nucleic acids from which differ slightly in composition. In addition, nucleoproteins have been isolated by complex formation with cetyltrimethylammonium bromide.128... [Pg.309]

By hydrolysis under very mild alkaline conditions (with a boiling suspension of barium carbonate), ribonucleic acids have been shown to yield small quantities of cyclic phosphates as well as the normal nucleotides.96 These materials were identical electrophoretically with synthetic cyclic phosphates and were readily hydrolyzed to mixtures of 2- and 3-phosphates. Their formation in this way constitutes strong support for Brown and Todd s theory. The precise way in which the alkaline hydrolysis of the polynucleotide occurs has been studied using isotopically labeled water, and the results are in agreement202 with the scheme outlined above. [Pg.322]

Retrovirus—Virus whose genetic material is composed of ribonucleic acid (RNA). [Pg.159]

A typical molecular analysis of various micro-organisms is shown in Table 5.9U ) Most of the elemental composition of cells is found in three basic types of materials—proteins, nucleic acids and lipids. In Table 5.10, the molecular composi-tion of a bacterium is shown in more detail. Water is the major component of the cell and accounts for 80-90 per cent of the total weight, whilst proteins form the next most abundant group of materials and these have both structural and functional properties. Most of the protein present will be in the form of enzymes. Nucleic acids are found in various forms—ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Their primary function is the storage, transmission and... [Pg.272]

DNA molecules are capable of making precise copies of themselves if errors are made during replication, they can even correct those errors to ensure an exact copy of the original molecule. But DNA molecules can be thought of as assemblers as well as replicators. They are capable of collecting raw materials in a cell and arranging them into some predetermined pattern required for the production of ribonucleic acid (RNA) molecules. [Pg.76]

RNA (ribonucleic acid) A single-stranded genetic material critical for protein synthesis in living cells. [Pg.176]

Deoxyribonucleic acid is the genetic material such that the information to make all the functional macromolecules of the cell is preserved in DNA (Sinden, 1994). Ribonucleic acids occur in three functionally different classes messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA) (Simons and Grun-berg-Manago, 1997). Messenger RNA serves to carry the information encoded from DNA to the sites of protein synthesis in the cell where this information is translated into a polypeptide sequence. Ribosomal RNA is the component of ribosome which serves as the site of protein synthesis. Transfer RNA (tRNA) serves as a carrier of amino acid residues for protein synthesis. Amino acids are attached as aminoacyl esters to the 3 -termini of the tRNA to form aminoacyl-tRNA, which is the substrate for protein biosynthesis. [Pg.79]

Deoxyribonucleic acid (DNA) is the genetic material of most living organisms. One of its main functions is to produce ribonucleic acid (RNA), which then makes proteins. Thus, information within DNA allows a cell to make most of the molecules it needs to function. [Pg.7]

Recombinant-DNA organism—an organism in which the genetic material has been changed through in vitro nucleic acid techniques, including recombinant deoxyribonucleic acid (DNA) and recombinant ribonucleic acid (RNA) and direct injection of nucleic acid into cells and organelles. [Pg.403]

The cell body contains many structures of importance. The nucleus is usually located in the center of the cell body. It contains widely dispersed, fine chromatin material. The chromatin is composed of deoxyribonucleic acid (DNA) and its associated histone proteins. The nucleolus contains the specific portion of DNA encoding the ribonucleic acid (RNA) of future ribosomes. [Pg.187]

The nucleus of the cell (Figure 1.2) is composed of a porous nuclear membrane, the nucleolus, and soluble materials. The nucleolus contains ribonucleic acids (RNA) and genetic materials also termed chromatin that code for the proteins synthesized upon the ribosomes in the cell cytoplasm. The nuclear membrane is continuous with the outer membrane of the endoplasmic reticulum. Messenger RNA synthesized in the nucleus is transported across the nuclear membrane and is involved in protein synthesis. It fits into the groove between the large and small rRNA subunits (Figure 1.2)... [Pg.14]


See other pages where Ribonucleic acid materials is mentioned: [Pg.21]    [Pg.142]    [Pg.200]    [Pg.248]    [Pg.209]    [Pg.142]    [Pg.120]    [Pg.293]    [Pg.295]    [Pg.302]    [Pg.302]    [Pg.306]    [Pg.310]    [Pg.310]    [Pg.312]    [Pg.317]    [Pg.56]    [Pg.149]    [Pg.666]    [Pg.86]    [Pg.32]    [Pg.510]    [Pg.510]    [Pg.142]    [Pg.1125]    [Pg.271]    [Pg.142]    [Pg.290]    [Pg.749]    [Pg.271]    [Pg.37]    [Pg.41]    [Pg.60]    [Pg.31]   
See also in sourсe #XX -- [ Pg.659 ]




SEARCH



Acidic materials

© 2024 chempedia.info