Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium catalysts reactions

This very important oxo reaction has been studied in detail the catalyst is known to be HCo(CO)4 which is generated in the reaction. The Monsanto Chemical Company recently developed a process for commercial production of acetic acid from CH3OH and CO using a rhodium catalyst, reaction (2). [Pg.97]

In the meantime, Aresta published some further work with rhodium catalysts. Reaction of two molecules of allene with carbon dioxide yielded dimethyl pyrone (compare Equation 11) besides polyallene and a small amount of oligomers [71]. As catalyst Rh(dppe)(n°-BPh ) was used. [Pg.87]

On catalytic hydrogenation over a rhodium catalyst the compound shown gave a mixture containing as 1 ten butyl 4 methylcyclohexane (88%) and trans 1 ten butyl 4 methylcyclo hexane (12%) With this stereochemical result in mind consider the reactions in (a) and (b)... [Pg.277]

The acetic anhydride process employs a homogeneous rhodium catalyst system for reaction of carbon monoxide with methyl acetate (36). The plant has capacity to coproduce approximately 545,000 t/yr of acetic anhydride, and 150,000 t/yr of acetic acid. One of the many challenges faced in operation of this plant is recovery of the expensive rhodium metal catalyst. Without a high recovery of the catalyst metal, the process would be uneconomical to operate. [Pg.167]

The search for catalyst systems which could effect the 0x0 reaction under milder conditions and produce higher yields of the desired aldehyde resulted in processes utilizing rhodium. Oxo capacity built since the mid-1970s, both in the United States and elsewhere, has largely employed tertiary phosphine-modified rhodium catalysts. For example, over 50% of the world s butyraldehyde (qv) is produced by the LP Oxo process, technology Hcensed by Union Carbide Corporation and Davy Process Technology. [Pg.465]

Meth5l-l,3-propanediol is produced as a by-product. The hydroformylation reaction employs a rhodium catalyst having a large excess of TPP (1) and an equimolar (to rhodium) amount of 1,4-diphenylphosphinobutane (DPPB) (4). Aqueous extraction/decantation is also used in this reaction as an alternative means of product/catalyst separation. [Pg.470]

Efficient enantioselective asymmetric hydrogenation of prochiral ketones and olefins has been accompHshed under mild reaction conditions at low (0.01— 0.001 mol %) catalyst concentrations using rhodium catalysts containing chiral ligands (140,141). Practical synthesis of several optically active natural... [Pg.180]

A synthesis of optically active citroneUal uses myrcene (7), which is produced from P-piaene. Reaction of diethylamine with myrcene gives A/,A/-diethylgeranyl- and nerylamines. Treatment of the aHyUc amines with a homogeneous chiral rhodium catalyst causes isomerization and also induces asymmetry to give the chiral enamines, which can be readily hydrolyzed to (+)-citroneUal (151). [Pg.423]

With Unsaturated Compounds. The reaction of unsaturated organic compounds with carbon monoxide and molecules containing an active hydrogen atom leads to a variety of interesting organic products. The hydroformylation reaction is the most important member of this class of reactions. When the hydroformylation reaction of ethylene takes place in an aqueous medium, diethyl ketone [96-22-0] is obtained as the principal product instead of propionaldehyde [123-38-6] (59). Ethylene, carbon monoxide, and water also yield propionic acid [79-09-4] under mild conditions (448—468 K and 3—7 MPa or 30—70 atm) using cobalt or rhodium catalysts containing bromide or iodide (60,61). [Pg.52]

G. Fisher and co-workers, "Mechanism of the Nitric Oxide—Carbon Monoxide—Oxygen Reaction Over a Single Crystal Rhodium Catalyst," in M. [Pg.496]

The direct formation of a dimethyl ketal by reaction of the ketone with methanol is particularly sensitive to steric effects. Only cyclohexanones react under these conditions.In the steroid series only saturated 3-ketones form dimethyl ketals with methanol and acid although partial reaction of a 2-ketone has been observed in the presence of homogenous rhodium catalyst. ... [Pg.378]

The dimethyl ketal function (51) is one of the most suitable base stable protecting groups for saturated 5a- and 5/i-3-ketones. It is formed by reaction of the ketone (50) with methanol in the presence of a suitable catalyst. Good selectivity can also be achieved with this group since 2-, 6-, 11-, 12-, 17- and 20-ketones do not form dimethyl ketals under these conditions. The 2-ketone is converted in part to the dimethyl ketal in the presence of homogeneous rhodium catalyst. "" y -Toluenesulfonic acid is the catalyst of... [Pg.388]

The intermolecular version of the above described reaction has also been reported [92]. In the first example the reaction of a rhodium catalyst carbonyl ylide with maleimide was studied. However, only low enantioselectivities of up to 20% ee were obtained [92]. In a more recent report Hashimoto et al. were able to induce high enantioselectivities in the intermolecular carbonyl ylide reaction of the... [Pg.242]

Rhodium Catalysts for Reactions of Carbonyl Ylides 242 Conclusion 244 Acknowledgment 245 References 245... [Pg.340]

The major advantage of the use of two-phase catalysis is the easy separation of the catalyst and product phases. FFowever, the co-miscibility of the product and catalyst phases can be problematic. An example is given by the biphasic aqueous hydro-formylation of ethene to propanal. Firstly, the propanal formed contains water, which has to be removed by distillation. This is difficult, due to formation of azeotropic mixtures. Secondly, a significant proportion of the rhodium catalyst is extracted from the reactor with the products, which prevents its efficient recovery. Nevertheless, the reaction of ethene itself in the water-based Rh-TPPTS system is fast. It is the high solubility of water in the propanal that prevents the application of the aqueous biphasic process [5]. [Pg.259]

The benzylic position of an alkylbcnzene can be brominated by reaction with jV-bromosuccinimide, and the entire side chain can be degraded to a carboxyl group by oxidation with aqueous KMnCfy Although aromatic rings are less reactive than isolated alkene double bonds, they can be reduced to cyclohexanes by hydrogenation over a platinum or rhodium catalyst. In addition, aryl alkyl ketones are reduced to alkylbenzenes by hydrogenation over a platinum catalyst. [Pg.587]

Such a complex, cw-Rh(CO)2I2, is the active species in the Monsanto process for low-pressure carbonylation of methanol to ethanoic acid. The reaction is first order in iodomethane and in the rhodium catalyst the rate-determining step is oxidative addition between these followed by... [Pg.103]

Arylmetallic compounds have various, but not very widely used, applications in organic synthesis. Examples are acyl-de-metallation reactions using either dicobalt octacarbonyl in tetrahydrofuran (Seyferth and Spohn, 1969 Scheme 10-92), or carbon monoxide and a rhodium catalyst (Larock and Hershberger, 1980). [Pg.276]

A more elegant, but expensive, approach22 has been the use of soluble iridium and rhodium catalysts which contain coordinated dimethyl sulphoxide (e.g. IrHCl2(Me2SO)3) which promote the oxidation of sulphoxides in aqueous media, equation (8). The ease of oxidation depends on the substituents and this decreases in the order Me > Ph > PhCH2. This reaction is especially useful since sulphides are not oxidized under the reaction conditions due to the formation of strong complexes with the catalyst. [Pg.972]

The insertion of a carbene into a Z-H bond, where Z=C, Si, is generally referred to as an insertion reaction, whereas those occurring from Z=0,N are based on ylide chemistry [75]. These processes are unique to carbene chemistry and are facilitated by dirhodium(II) catalysts in preference to all others [1, 3,4]. The mechanism of this reaction involves simultaneous Z-H bond breaking, Z-car-bene C and carbene C-H bond formation, and the dissociation of the rhodium catalyst from the original carbene center [1]. [Pg.214]

Rhodium catalysts have also been used. Benzylic halides were converted to carboxylic esters with CO in the presence of a rhodium complex. In this case, the R could come from an ether R20, a borate ester B(OR )3, or an Al, Ti, or Zr alkoxide. Reaction with an a,co-diiodide, BU4NF and Mo(CO)e gave the corresponding lactone. ... [Pg.565]


See other pages where Rhodium catalysts reactions is mentioned: [Pg.143]    [Pg.1018]    [Pg.83]    [Pg.143]    [Pg.1018]    [Pg.83]    [Pg.209]    [Pg.953]    [Pg.68]    [Pg.465]    [Pg.469]    [Pg.181]    [Pg.294]    [Pg.73]    [Pg.208]    [Pg.31]    [Pg.380]    [Pg.52]    [Pg.169]    [Pg.92]    [Pg.69]    [Pg.1140]    [Pg.242]    [Pg.242]    [Pg.243]    [Pg.40]    [Pg.164]    [Pg.796]    [Pg.24]    [Pg.712]    [Pg.801]   
See also in sourсe #XX -- [ Pg.243 , Pg.244 ]




SEARCH



Rhodium catalysts asymmetric reactions

Rhodium catalysts catalyst

Rhodium reaction

Rhodium, chlorotris catalyst silane reaction with carbonyl compounds

Rhodium-alumina catalysts reactions over

Suzuki-Miyaura reaction rhodium catalysts

© 2024 chempedia.info