Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ylides, carbonyl

Recently, metal-containing carbonyl ylides have attracted much attention as a class of powerful dipoles for 1,3-dipolar cycloaddition reactions to assemble heterocyclic compounds, which was first reported by Iwasawa et al. in 2001 [20]. The in situ generation of metal-containing carbonyl ylides involves the electrophilic activation of an alkyne by a transition metal toward nucleophilic attack of the carbonyl group. One representative example for the synthesis of naphthalene derivatives is shown in [Pg.406]

Treatment of aldehydes or ketones with acceptor-substituted carbene complexes leads to formation of enol ethers [1271-1274], oxiranes [1048], or 1,3-dioxolanes [989,1275] by O-alkylation of the carbonyl compound. Carboxylic acid derivatives [Pg.206]

Experimental Procedure 4.2.7. Carbonyl Ylide Formation and Intramolecular 1,3-Dipolar Cycloaddition Ethyl 2-Hydroxy-8,9-dimethoxy-3-oxo-1,2,3.5,6,11, 12,13,14,14a-decahydroisoquino[ 1,2-/Iquinoline-2-carboxylate [1143] [Pg.210]


Interesting structures can be formed by combinations of ring and side-chain substituents in special relative orientations. As indicated above, structures (28) contain the elements of azomethine or carbonyl ylides, which are 1,3-dipoles. Charge-separated species formed by attachment of an anionic group to an azonia-nitrogen also are 1,3-dipoles pyridine 1-oxide (32) is perhaps the simplest example of these the ylide (33) is another. More complex combinations lead to 1,4-dipoles , for instance the pyrimidine derivative (34), and the cross-conjugated ylide (35). Compounds of this type have been reviewed by Ramsden (80AHCl26)l). [Pg.4]

Azomethine ylides are also frequently obtained by ring opening of aziridines, and the analogous carbonyl ylides from oxiranes. These aspects are dealt with in Section 3.03.5.1. A variety of five-membered heterocycles can also function as masked 1,3-dipoles and this aspect is considered in Section 3.03.5.2. [Pg.135]

The parallel ability of oxiranes to undergo ring opening to carbonyl ylides was first noted in the case of tetracyanooxirane (68T2551), but such reactions have not been widely exploited. The addition to alkenes, leading to formation of tetrahydrofurans, is stereospecific (Scheme... [Pg.138]

Generation and reactions of carbonyl ylides, nonstabilized 1,3-dipolar reagents 98YGK681. [Pg.245]

For the reactions of other 1,3-dipoles, the catalyst-induced control of the enantio-selectivity is achieved by other principles. Both for the metal-catalyzed reactions of azomethine ylides, carbonyl ylides and nitrile oxides the catalyst is crucial for the in situ formation of the 1,3-dipole from a precursor. After formation the 1,3-di-pole is coordinated to the catalyst because of a favored chelation and/or stabiliza-... [Pg.215]

For azomethine ylides and carbonyl ylides, the diastereoselectivity is more complex as the presence of an additional chiral center in the product allows for the formation of four diastereomers. Since the few reactions that are described in this chapter of these dipoles give rise to only one diastereomer, this topic will not be mentioned further here [10]. [Pg.217]

The intermolecular version of the above described reaction has also been reported [92]. In the first example the reaction of a rhodium catalyst carbonyl ylide with maleimide was studied. However, only low enantioselectivities of up to 20% ee were obtained [92]. In a more recent report Hashimoto et al. were able to induce high enantioselectivities in the intermolecular carbonyl ylide reaction of the... [Pg.242]

The rhodium-catalyzed tandem carbonyl ylide formation/l,3-dipolar cycloaddition is an exciting new area that has evolved during the past 3 years and high se-lectivities of >90% ee was obtained for both intra- and intermolecular reactions with low loadings of the chiral catalyst. [Pg.245]

Rhodium Catalysts for Reactions of Carbonyl Ylides 242 Conclusion 244 Acknowledgment 245 References 245... [Pg.340]

Carbonyl ylides continue to be targets of opportunity because of their suitability for trapping by dipolar addition. High enantiocontrol has been achieved in the process described by Eq. 16 [109], but such high enantioselectivity is not general [110] and is dependent on those factors suggested by Scheme 11. Using achiral dirhodium(II) catalysts, Padwa and coworkers have developed a broad selection of tandem reactions of which that in Eq. 17 is illustrative [111] these... [Pg.218]

More recently carbonyl ylides and the corresponding imino ylides generated from aryl- and vinyldiazoacetates have been shown to undergo a variety of processes not previously encountered (Scheme 12) [112,113]. The difference in... [Pg.218]

The application of 1,3-dipolar cycloaddition processes to the synthesis of substituted tetrahydrofurans has been investigated, starting from epoxides and alkenes under microwave irradiation. The epoxide 85 was rapidly converted into carbonyl ylide 86 that behaved as a 1,3-dipole toward various alkenes, leading to quantitative yields of tetrahydrofuran derivatives 87 (Scheme 30). The reactions were performed in toluene within 40 min instead of 40 h under classical conditions, without significantly altering the selectivi-ties [64]. [Pg.230]

Nonstabilized carbonyl ylides (41) prepared by reaction of a-iodosilyl ethers with Smlj, can be trapped with various alkenes, alkynes and allenes to form furans of type 42, 43, and 44... [Pg.132]

Compounds in which a carbonyl or other nucleophilic functional group is close to a carbenoid carbon can react to give ylide intermediate.221 One example is the formation of carbonyl ylides that go on to react by 1,3-dipolar addition. Both intramolecular and intermolecular cycloadditions have been observed. [Pg.938]

The choice of the catalyst is crucial when it comes to competition between intramolecular cyclopropanation and intramolecular carbonyl ylide formation by a... [Pg.153]

The distinction between Pd and Rh catalysts was also verified for diazoketone 190. In this case, the carbonyl ylide was trapped by intramolecular [3+2] cycloaddition to the C=C bond195. Decomposition of bis-diazoketone 191 in the presence of CuCl P(OEt)3 or Rh2(OAc)4 led to the pentacyclic ketone 192 most remarkably, one diazoketone unit reacted by cyclopropanation, the second one by carbonyl ylide formation 194). With [(r 3-C3H5)PdCl]2, a non-separable mixture containing mostly polymers was obtained, although bis-diazoketones with one or two allyl side chains instead of the butenyl groups underwent successful twofold cyclopropanation 196). [Pg.159]

Interaction of a carbonyl group with an electrophilic metal carbene would be expected to lead to a carbonyl ylide. In fact, such compounds have been isolated in recent years 14) the strategy comprises intramolecular generation of a carbonyl ylide whose substituent pattern guarantees efficient stabilization of the dipolar electronic structure. The highly reactive 1,3-dipolar species are usually characterized by [3 + 2] cycloaddition to alkynes and activated alkenes. Furthermore, cycloaddition to ketones and aldehydes has been reported for l-methoxy-2-benzopyrylium-4-olate 286, which was generated by Cu(acac)2-catalyzed decomposition of o-methoxycarbonyl-m-diazoacetophenone 285 2681... [Pg.190]

Intramolecular carbonyl ylide formation was also invoked to explain the formation of the AH-1,3-oxazin-5(6//)-ones 291a, b upon copper-catalyzed decomposition of diazoketones 290a, b 270 >. Oxapenam 292, obtained from 290b as a minor product, originates from an intermediary attack of the carbenic carbon at the sulfur atom. In fact, this pathway is followed exclusively if the C(Me, COOMe) group in 290b is replaced by a CH2 function (see Sect. 7.2). [Pg.191]

Interaction between a carbonyl oxygen and a metal carbene leading to a transient carbonyl ylide may also be considered to be involved in the production of a vinyl... [Pg.191]

Efforts to realize an intramolecular version of the above reactions met with limited success when monocyclic 4-thio-substituted (3-lactams were used. Cu(acac)2-catalyzed decomposition of diazoketone 358 produced the epimeric carbapenams 359 a, b together with the oxapenam derivative 360 341 these compounds correspond to the C4/S insertion products obtained in intermolecular reactions. Oxapenams were obtained exclusively when the acrylate residue in 359 was replaced by an aryl or heteroaryl substituent 275 342). The different reaction mode of diazoketones 290a, b, which furnish mainly or exclusively carbonyl ylide rather than sulfur ylide derived products, has already been mentioned (Sect. 5.2). [Pg.216]

Diels-Alder reaction of the 1,3,4-oxadiazole with the pendant olefin and loss of N2, the C2-C3 7t bond participates in a subsequent 1,3-dipolar cycloaddition with the carbonyl ylide to generate complex polycycles such as 45 as single diastereomers with up to six new stereocenters. That the cascade reaction is initiated by a Diels-Alder reaction with the alkene rather than with the indole is supported by the lack of reaction even under forcing conditions with substrate 46, in which a Diels-Alder reaction with the indole C2-C3 n bond would be required [26a]. [Pg.76]

Scheme 29. 1,3-DC Reactions of porphyrin la with a carbonyl ylide. Scheme 29. 1,3-DC Reactions of porphyrin la with a carbonyl ylide.

See other pages where Ylides, carbonyl is mentioned: [Pg.144]    [Pg.100]    [Pg.113]    [Pg.894]    [Pg.212]    [Pg.213]    [Pg.213]    [Pg.242]    [Pg.242]    [Pg.243]    [Pg.248]    [Pg.249]    [Pg.296]    [Pg.296]    [Pg.328]    [Pg.329]    [Pg.203]    [Pg.218]    [Pg.12]    [Pg.86]    [Pg.192]    [Pg.145]    [Pg.426]    [Pg.157]    [Pg.159]    [Pg.192]    [Pg.232]    [Pg.64]   
See also in sourсe #XX -- [ Pg.132 ]

See also in sourсe #XX -- [ Pg.206 , Pg.207 , Pg.208 , Pg.209 , Pg.210 , Pg.211 , Pg.212 ]

See also in sourсe #XX -- [ Pg.389 ]

See also in sourсe #XX -- [ Pg.254 , Pg.257 , Pg.279 ]

See also in sourсe #XX -- [ Pg.149 ]

See also in sourсe #XX -- [ Pg.292 ]

See also in sourсe #XX -- [ Pg.230 ]

See also in sourсe #XX -- [ Pg.157 ]

See also in sourсe #XX -- [ Pg.273 ]

See also in sourсe #XX -- [ Pg.147 ]

See also in sourсe #XX -- [ Pg.242 ]

See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Carbonyl ylide

© 2024 chempedia.info