Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reverse osmosis fouling

Kumar, M., S. S. Adham, and W. R. Pearce. 2006. Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type. Environ, Sci. Technol. 40 2037-2044. [Pg.469]

Numerous other fouling indexes are noted in the literature, including the ROFix (reverse osmosis fouling index)i° PI (permeation index) (Nakamura), and CFI (combined fouling index). None of these indexes have been as widely accepted as the SDI and, to a lesser extent, the MFI. ... [Pg.45]

Natto, Osama, Dissecting a Winning Entrepreneurial Pitch ROFix (Reverse Osmosis Fouling Index) Analysis, http //osamanatto.com/rofix-reverse-osmosis-fouling-index-analysis/, April 16, 2014, accessed June 26, 2014. [Pg.47]

Fig. 23. Two types of hollow-fiber modules used for gas separation, reverse osmosis, and ultrafiltration applications, (a) Shell-side feed modules are generally used for high pressure appHcations up to - 7 MPa (1000 psig). Fouling on the feed side of the membrane can be a problem with this design, and pretreatment of the feed stream to remove particulates is required, (b) Bore-side feed modules are generally used for medium pressure feed streams up to - 1 MPa (150 psig), where good flow control to minimise fouling and concentration polarization on the feed side of the membrane is desired. Fig. 23. Two types of hollow-fiber modules used for gas separation, reverse osmosis, and ultrafiltration applications, (a) Shell-side feed modules are generally used for high pressure appHcations up to - 7 MPa (1000 psig). Fouling on the feed side of the membrane can be a problem with this design, and pretreatment of the feed stream to remove particulates is required, (b) Bore-side feed modules are generally used for medium pressure feed streams up to - 1 MPa (150 psig), where good flow control to minimise fouling and concentration polarization on the feed side of the membrane is desired.
A second factor determining module selection is resistance to fouling. Membrane fouling is a particularly important problem in Hquid separations such as reverse osmosis and ultrafiltration. In gas separation appHcations, fouling is more easily controlled. Hollow-fine fibers are notoriously prone to fouling and can only be used in reverse osmosis appHcations if extensive, costiy feed-solution pretreatment is used to remove ah. particulates. These fibers caimot be used in ultrafiltration appHcations at ah. [Pg.74]

In reverse osmosis, most modules are of the hollow-fine fiber or spiral-wound design plate-and-frame and tubular modules are limited to a few appHcations in which membrane fouling is particularly severe, for example, food appHcations or processing of heavily contaminated industrial wastewater. [Pg.74]

Hollow-fiber designs are being displaced by spiral-wound modules, which are inherently more fouling resistant, and require less feed pretreatment. Also, thin-film interfacial composite membranes, the best reverse osmosis membranes available, have not been fabricated in the form of hoUow-fine fibers. [Pg.75]

J. Siler, "Reverse Osmosis Membranes-Concentration Polarization and Surface Fouling Predictive Models and Experimental Verifications," dissertation. University of Kentucky, Lexington, Ky., 1987. [Pg.157]

Reverse Osmosis Membrane Cleaning. Citric acid solutions are used to remove iron, calcium, and other cations that foul ceUulose acetate and other membranes in reverse osmosis and electro dialysis systems. Citric acid solutions can solubilize and remove these cations without damaging the membranes (94—96). [Pg.185]

The success of EDR ia water demineralization has appareatly resulted from its greater tolerance of particulate and fouling matter compared to reverse osmosis greater forgivingness of process upsets greater tolerance for unskilled operators simplicity ia desiga and constmction of EDR stacks compared to reverse osmosis modules the abiHty to iaspect, clean, or replace one membrane at a time the existence of a comprehensive global sales and... [Pg.175]

Two other major factors determining module selection are concentration polarisation control and resistance to fouling. Concentration polarisation control is a particularly important issue in liquid separations such as reverse osmosis and ultrafiltration. Hollow-fine-fibre modules are notoriously prone to fouling and concentration polarisation and can be used in reverse osmosis applications only when extensive, costly feed solution pretreatment removes all particulates. These fibres cannot be used in ultrafiltration applications at all. [Pg.374]

Ionic silica is not totally removable by DI. Colloidal silica is difficult to remove by both DI and reverse osmosis (RO) it may cause some resin fouling as well as leaking into the treated water. Where the cation effluent is maintained at a pH of 2.0 to 3.0, however, silica tends to both depolymerize and ionize thus enabling its effective removal in strongly basic, anion resin beds. [Pg.199]

Reverse osmosis plants also are not immune from silica fouling, and where the raw water source naturally contains relatively high levels of silica, good pretreatment of the RO FW is a prerequisite. To reduce fouling of RO membranes by silica, pretreatment by acid adjustment, alum coagulation, and filtration usually is provided. [Pg.199]

Reverse osmosis requires good pretreatment to prevent membrane fouling and loss of performance. Because it is seldom better than 60 to 70% efficient, there is a relatively high cost for pumping and discharging the additional supply water consumed. Nevertheless, it is good as a bulk water roughing process for purification. [Pg.344]

Hyperfiltration (Reverse Osmosis) is a form of membrane distillation or desalination (desalting) operating with membrane pore sizes of perhaps 1 to 10 Angstrom units. The various individual RO component technologies have improved tremendously over the last 20 to 25 years, and resistance to fouling and permeate output rates have benefited. Nevertheless, all RO plants remain susceptible to the risk of fouling, and adequate pretreatment and operation is essential to minimize this problem. [Pg.360]

Reverse osmosis plant are always subject to an insidious and gradual loss of permeate volume output or quality deterioration due to membrane fouling. The rate of decline is strongly influenced by the input RW quality. Therefore, any and all features, such as those above, that can be employed to delay the onset and degree of fouling and extend membrane life are to be recommended. [Pg.366]

As with reverse osmosis, feed pretreatment can be used to minimize membrane fouling and degradation, and regular cleaning is necessary. [Pg.198]

Membrane processes such as ultrahltrahon or reverse osmosis have been proposed as oil removal processes. Laboratory tests have indicated favorable oil removal, although relatively low flux rates, membrane fouling, and membrane life problems have presented concerns for the practical applicahon of membrane processes to oil removal. [Pg.244]

In temperate climate zones it may be more appropriate to install a nanofiltration process rather than reverse osmosis. Nanofiltration allows the production of drinking water from polluted rivers. As for reverse osmosis, pretreatment is important to control fouling of the membranes. One of the largest such plants produces 140,000 m3/day of water for the North Paris region(26). [Pg.469]

Model and Preliminary Experiments on Membrane Fouling in Reverse Osmosis... [Pg.131]

Jackson, J.M., and Landolt, D., "About the Mechanism of Formation of Iron Hydroxide Fouling Layers on Reverse Osmosis Membranes," Desalination 12, 361-378 (1973). [Pg.146]

Chlorine is the oldest and most widespread method of water disinfection. In reverse osmosis systems, chlorine may be added to feedwater for control of micro-organisms and, in addition, to prevent membrane fouling by microbiological growth. According to Vos et al. [i,2], chlorine will attack cellulose diacetate membranes at concentrations above 50 ppm. Membranes were found to show a sharp increase in salt permeability and a decrease in strength after one week of continuous exposure. Under milder conditions (10 ppm chlorine for 15 days) no detectable change in performance was observed. Spatz and Friedlander [3] have also found cellulose acetate membranes to be resistant to chlorine when exposed to 1.5 ppm for three weeks. [Pg.171]

Reverse osmosis can remove dissolved metals to very low levels. It can also remove a variety of pollutants such as cyanide and residual organics from refinery wastewater. However, because it is an expensive process, it would be competitive only if removal of total dissolved solids is also required. It also requires extensive pretreatment to prevent membrane fouling and deterioration [52]. The pretreatment processes may include filtration to remove suspended solids, pH adjustment, softening, and activated carbon treatment to remove organics and chlorine. A major drawback of the RO process is the handling and disposal of the reject stream, which can amount to 20-30% of the influent flow. [Pg.297]


See other pages where Reverse osmosis fouling is mentioned: [Pg.151]    [Pg.146]    [Pg.150]    [Pg.73]    [Pg.149]    [Pg.150]    [Pg.154]    [Pg.151]    [Pg.2228]    [Pg.785]    [Pg.369]    [Pg.371]    [Pg.67]    [Pg.1247]    [Pg.197]    [Pg.198]    [Pg.445]    [Pg.561]    [Pg.458]    [Pg.464]    [Pg.19]    [Pg.131]    [Pg.131]    [Pg.134]    [Pg.235]    [Pg.149]    [Pg.150]    [Pg.154]   
See also in sourсe #XX -- [ Pg.211 ]

See also in sourсe #XX -- [ Pg.35 , Pg.36 , Pg.37 ]




SEARCH



Fouling Reverse osmosis technology

Fouling reverse osmosis thin-film composite

Fouling tests in reverse osmosis

Osmosis

Osmosis reversed

Reverse osmosis

Reverse osmosis membrane fouling

Reverse osmosis membranes fouling/scaling

Reverse osmosis particulate fouling

Reversible fouling

© 2024 chempedia.info