Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic resins

Conversion of the salt of a weak base into the free base. Prepare a column of a strong base anion resin (such as Amberlite IRA-40o(OH) ) washed with distilled water as above. Drain off most of the water and then allow 100 ml. of A//2.Na.2C03 solution to pass through the column at 5 ml. per minute. Again wash the column with 200 ml. of distilled water. Dissolve 0-05 g. of aniline hydrochloride in 100 ml. of distilled water and pass the solution down the column. The effluent contains aniline in solution and free from all other ions. [Pg.57]

Removal of acids from mixtures of acids and neutral substances. Prepare a column of a strong base anion resin and treat it with sodium... [Pg.57]

In 1945, cationic urea resins were introduced and quickly supplanted the anionic resins, since they could be used with any type of pulp (62). Although they have now become commodities, their use in the industry has been steadily declining as the shift towards neutral and alkaline papermaking continues. They are commonly made by the reaction of urea and formaldehyde with one or more polyethylene—polyamines. The stmcture of these resins is very compHcated and has not been deterrnined. Ammonia is evolved during the reaction, probably according to the following ... [Pg.332]

Demineraliza tion of water is the removal of essentially all inorganic salts by ion exchange. In this process, strong acid cation resin in the hydrogen form converts dissolved salts into their corresponding acids, and strong base anion resin in the hydroxide form removes these acids. Demineralization produces water similar in quaHty to distillation at a lower cost for most fresh waters. [Pg.260]

Ionisation occurs in aqueous solution to give a resin of negative charge, as in, for example, a number of anionic resins ... [Pg.680]

Strong Base Anion Resin Charged with OH... [Pg.378]

Weakly basic anion resins derive their functionality from primary (R-NH), secondary (R-NHR ), tertiary (R-N-R 2), and sometimes quaternary amine groups. The weakly basic resin readily absorbs such free mineral acids as hydrochloric and sulfuric, and the reactions may be represented according to the following ... [Pg.384]

There also exists a type of resin with no functional groups attached. This resin offers no capacity to the system but increases regeneration efficiency in mixed-bed exchangers. These inert resins are of a density between cation and anion resins and when present in... [Pg.385]

Variances in resin performance and capacities can be expected from normal annual attrition rates of ion-exchange resins. Typical attrition losses that can be expected include (1) Strong cation resin 3 percent per year for three years or 1,000,000 gals/ cu.ft (2) Strong anion resin 25 percent per year for two years or 1,000,000 gals/ cu.ft (3) Weak cation/anion 10 percent per year for two years or 750,000 gals/ cu. ft. A steady falloff of resin-exchange capacity is a matter of concern to the operator and is due to several conditions ... [Pg.387]

Silica fouling is the accumulation of insoluble silica on anion resins. It is caused by improper regeneration which allows the silicate (ionic form) to hydrolyze to soluble silicic acid which in turn polymerizes to form colloidal silicic acid with the beads. Silica fouling occurs in weak-base anion resins when they are regenerated with silica-laden waste caustic from the strongbase anion resin unless intermediate partial dumping is done. [Pg.388]

In mixed-bed units, both the cation and the anion resins are mixed together thoroughly in the same vessel by compressed air. The cation and the anion resins being next to each other constitute an infinite number of cation and anion exchangers. The effluent quality obtainable from a well-designed and operated mixed-bed exchanger will readily produce demineralized water of conductivity less than 0.5 mmho and silica less than 10 ppb. [Pg.390]

Backwash Cycle - Prior to regeneration, the cation and the anion resins are separated by backwashing at a flow rate of 3.0 to 3.5 gpm/ft. The separation occurs because of the difference in the density of the two types of resin. The cation resin, being heavier, settles on the bottom, while the anion resin, being lighter, settles on top of the cation resin. After backwashing, the bed is allowed to settle down for 5 to 10 minutes and two clearly distinct layers are formed. After separation, the two resins are independently regenerated. [Pg.391]

Ion exchange, in which cation and/or anion resins are used to replace undesirable anionic species in liquid solutions with nonhazardous ions. For example, cation-exchange resins may contain nonhazardous, mobile, positive ions (e g., sodium, hydrogen) which are attached to immobile acid groups (e.g., sulfonic or carboxylic). Similarly, anion-exchange resins may include nonhazardous, mobile, negative ions (e.g., hydroxyl or chloride) attached to immobile basic ions (e.g., amine). These resins can be used to eliminate various species from wastewater, such as dissolved metals, sulfides, cyanides, amines, phenols, and halides. [Pg.17]

Generally, PS containing amine groups are synthesized by condensation of chlorinated PS with amines. These type of resins are widely used as anionic resins.[8] PSs containing imidazol rings have antistatic properties and are used as additives to make dyeing of synthetic fiber materials easy [9] (Scheme [3]). [Pg.260]

The anion resins used in de-ionization are prone to fouling if the water contains organic matter. The soft peaty waters mentioned above are particularly bad in this respect, and, at worst, can reduce resin life to a few weeks. [Pg.481]

Cation units usually contain a sulphonic acid resin whilst anion resins fall into the two main categories of strongly basic, with quaternary ammonium groupings and weakly basic, with tertiary amine groups. The final unit is the mixed bed in which, by a mixture of cation and anion resins in the same vessel, the effect is achieved of a multiplicity of separate cation and anion units. Resin separation is necessary for regeneration purposes. Considerable improvements in water quality are obtainable by these means. [Pg.834]

The major chemical problem met in ion-exchange practice is the fouling or poisoning of the anion resins by organic matter. The various counter measures deployed include pre-flocculation, oxidation of the organic material, the use of specially developed resins, and treatment of the fouled resins by brine and/or hypochlorite. [Pg.834]

As already indicated, ion exchange resins are osmotic systems which swell owing to solvent being drawn into the resin. Where mixed solvent systems are used the possibility of preferential osmosis occurs and it has been shown that strongly acid cation and strongly basic anion resin phases tend to be predominantly aqueous with the ambient solution predominantly organic. This effect (preferential water sorption by the resin) increases as the dielectric constant of the organic solvent decreases. [Pg.201]

Ionic silica is not totally removable by DI. Colloidal silica is difficult to remove by both DI and reverse osmosis (RO) it may cause some resin fouling as well as leaking into the treated water. Where the cation effluent is maintained at a pH of 2.0 to 3.0, however, silica tends to both depolymerize and ionize thus enabling its effective removal in strongly basic, anion resin beds. [Pg.199]

A further problem that may cause contamination of the treated MU water is anion leakage as a result of organic fouling. This significantly affects anion resins, preventing ion removal by ion exchange and thus reducing bed capacity. [Pg.200]

The organic resin material is often a styrene divinylbenzene (DVB) copolymer in a network or matrix, to which are attached functional groups such as a sulfonic acid, carboxylic acid, and quaternary ammonium. The nature of these groups determines whether the resin is classified as a strong/weak acid (cation resin) or strong/weak base (anion resin) ion-exchanger. [Pg.327]

Organic removal using these resins is through a combination of absorption and ion-exchange, typically using strong base anion resin,... [Pg.330]

Where an organic trap is part of a demineralization plant system, it is placed in the train upstream of the strong base anion (SBA) resin unit. When the organic trap resin is placed within the same pressure vessel, physically on top of the anion resin (stratified bed), in which case, as it forms part of the overall anion capacity, a weak base anion resin operating in the free base form is employed. [Pg.331]

Cation resins exchange positive ions (e.g., calcium, magnesium or iron) from water, while anion resins exchange negative ions (e.g.,... [Pg.347]

Trio-beds (triple beds) This is an MB double compartment design with an intermediate-density inert resin added to physically split the cation/anion resins during regeneration to minimize leakage. [Pg.353]


See other pages where Anionic resins is mentioned: [Pg.56]    [Pg.376]    [Pg.162]    [Pg.261]    [Pg.378]    [Pg.1496]    [Pg.484]    [Pg.363]    [Pg.374]    [Pg.377]    [Pg.384]    [Pg.384]    [Pg.386]    [Pg.388]    [Pg.391]    [Pg.391]    [Pg.391]    [Pg.399]    [Pg.481]    [Pg.482]    [Pg.834]    [Pg.326]    [Pg.330]    [Pg.348]    [Pg.349]    [Pg.353]   
See also in sourсe #XX -- [ Pg.471 ]




SEARCH



Anion resins

© 2024 chempedia.info