Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resins pollutants

When low boiling ingredients such as ethylene glycol are used, a special provision in the form of a partial condenser is needed to return them to the reactor. Otherwise, not only is the balance of the reactants upset and the raw material cost of the resin increased, but also they become part of the pollutant in the waste water and incur additional water treatment costs. Usually, a vertical reflux condenser or a packed column is used as the partial condenser, which is installed between the reactor and the overhead total condenser, as shown in Figure 3. The temperature in the partial condenser is monitored and maintained to effect a fractionation between water, which is to pass through, and the glycol or other materials, which are to be condensed and returned to the reactor. If the fractionation is poor, and water vapor is also condensed and returned, the reaction is retarded and there is a loss of productivity. As the reaction proceeds toward completion, water evolution slows down, and most of the glycol has combined into the resin stmcture. The temperature in the partial condenser may then be raised to faciUtate the removal of water vapor. [Pg.40]

A primary source of environmental pollution from printing ink comes from the metal-based pigments used, as well as various resins, waxes, and drying agents that are also part of the inks. These materials are added to inks regardless of the source of the oil. As a result, petroleum inks are just as suitable for landfill disposal under U.S. EPA regulations as are vegetable oil inks. [Pg.55]

Screenable inks have a resin or polymer base and are of three types organic solvent soluble, aqueous alkah soluble, and permanent. Primarily because of pollution requirements and higher solvent costs, the aqueous types have come into greater use. The permanent types are used as solder masks or for marking the boards. Uv-curable inks are also in use. [Pg.125]

Medical uses for Udel resin include surgical trays, nebulizers, flow controllers for blood, and respiration regulators. Transportation applications center around automotive fuse housings, electrical connectors, and switches. Electrical and electronic end uses include coil bobbins, housings, connectors, bushings, capacitor film, and business machine parts. EinaHy, water, heater dip tubes, milking machine parts, pollution control equipment, and some filtration membranes are made. [Pg.272]

Gaseous and particulate pollutants are withdrawn isoldnetically from an emission source and collected in a multicomponent sampling train. Principal components of the train include a high-efficiency glass- or quartz-fiber filter and a packed bed of porous polymeric adsorbent resin (typically XAD-2 or polyurethane foam for PCBs). The filter is used to collect organic-laden particulate materials and the porous polymeric resin to adsorb semivolatile organic species (com-... [Pg.2207]

Groundwater is vulnerable to pollution by chemicals carried by rainwater, leaching from waste sites or from waste water carrying industrial or agricultural effluent. Treatment of drinking water may remove some, but not all, of these contaminants. Some polycarbonate or metal water pipes that are lined with epoxy resin lacquers may release bisphenol A. [Pg.15]

Free phenol is a major concern in the manufacture of novolac resins. This is true for several reasons. The strongest drivers are probably EPA classification of phenol as a Hazardous Air Pollutant and worker safety concerns. However, free phenol also has significant technical effects on such parameters as melt flow characteristics. In this role, free phenol may undermine the desired effects of a molecular weight design by increasing flow beyond the desired point. Since free phenol is often variable, the effects on flow may also cause variation in product performance from batch to batch. Fig. 18 shows the effects of free phenol on the flow across a series of molecular weights. Free phenol contents between 1 and 10% are commonly seen. In recent years, much work has been aimed at reducing the free phenol. [Pg.925]

Three external MSA s are considered for removing ammonia from water, air (Si), activated carbon (S2) and an adsorbing resin (S3). The data for the candidate MSA s are given in Table 4.1. The equilibrium data for the transfer of the pollutant from the waste stream to the jth MSA is given by. [Pg.88]

Occupational and environmental exposure to chemicals can take place both indoors and outdoors. Occupational exposure is caused by the chemicals that are used and produced indoors in industrial plants, whereas nonoccupa-tional (and occupational nonindustrial) indoor exposure is mainly caused by products. Toluene in printing plants and styrene in the reinforced plastic industry are typical examples of the two types of industrial occupational exposures. Products containing styrene polymers may release the styrene monomer into indoor air in the nonindustrial environment for a long time. Formaldehyde is another typical indoor pollutant. The source of formaldehyde is the resins used in the production process. During accidents, occupational and environmental exposures may occur simultaneously. Years ago, dioxin was formed as a byproduct of production of phenoxy acid herbicides. An explosion in a factory in... [Pg.255]

Atmospheres polluted by oxidising agents, e.g. ozone, chlorine, peroxide, etc. whose great destructive power is in direct proportion to the temperature, are also encountered. Sulphuric acid, formed by sulphur dioxide pollution, will accelerate the breakdown of paint, particularly oil-based films. Paint media resistant both to acids, depending on concentration and temperature, and oxidation include those containing bitumen, acrylic resins, chlorinated or cyclised rubber, epoxy and polyurethane/coal tar combinations, phenolic resins and p.v.c. [Pg.611]

A common approach for personal dosimetry is collection of pollutant on, e.g., silica gel, organic resins or activated charcoal in small tubes worn on the operator s lapel (Table 9.2). Silica gel is useful for polar chemicals charcoal finds wide use for non-polar substances. The pollutant is then solvent-extracted or thermally desorbed for subsequent analysis by, e.g., chromatography. [Pg.208]

Organic carboxylic acids are commonly found in foods, in the adipate process stream, and as pollutants. Fatty acids are the lipophilic portion of glycerides and a major component of the cell membrane. Phenols are widely used in polymers, as wood preservatives, and as disinfectants. Chloro-phenols such as 4-chlorophenol, two isomeric dichlorophenols, 2,4,6-tri-chlorophenol, three isomeric tetrachlorophenols, and pentachlorophenol were separated on a Dowex (The Dow Chemical Co. Midland, MI) 2-X8 anion exchange resin using an acetic acid-methanol gradient.138... [Pg.233]

The ion exchange system will be capable of processing 200,000 lb/hr. A two-bed ion exchange unit will be specified. The minimum resin volume is 200 ft3. This was calculated on the basis of 2 GPM/ft3 resin.62 During the summer the extra wash water will be sent directly to the river. It does not appear to be warm enough to justify a cooling tower and should contain no pollutants. [Pg.220]

Brown and Bellinger [123] have proposed an ultraviolet technique that is applicable to both polluted and unpolluted fresh and some estuarine waters. Humic acid and other organics are removed on an ion exchange resin. Bromide interference in seawater samples can be minimised by suitable dilution of the sample but this raises the lower limit of detection such that only on relatively rich (0.5 mg/1 NO3N) estuarine and inshore waters could the method be used. Chloride at concentrations in excess of 10 000 mg/1 do not interfere. [Pg.85]

The plutonium concentration in marine samples is principally due to environmental pollution caused by fallout from nuclear explosions and is generally at very low levels [75]. Environmental samples also contain microtraces of natural a emitters (uranium, thorium, and their decay products) which complicate the plutonium determinations [76]. Methods for the determination of plutonium in marine samples must therefore be very sensitive and selective. The methods reported for the chemical separation of plutonium are based on ion exchange resins [76-80] or liquid-liquid extraction with tertiary amines [81], organophosphorus compounds [82,83], and ketones [84,85]. [Pg.354]


See other pages where Resins pollutants is mentioned: [Pg.186]    [Pg.186]    [Pg.7]    [Pg.492]    [Pg.328]    [Pg.328]    [Pg.349]    [Pg.341]    [Pg.19]    [Pg.426]    [Pg.396]    [Pg.2227]    [Pg.82]    [Pg.316]    [Pg.1052]    [Pg.372]    [Pg.441]    [Pg.1259]    [Pg.582]    [Pg.610]    [Pg.655]    [Pg.316]    [Pg.229]    [Pg.78]    [Pg.176]    [Pg.422]    [Pg.623]    [Pg.878]    [Pg.1323]    [Pg.275]    [Pg.361]   
See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Resin acids pollution from

Resins, pollution source

© 2024 chempedia.info