Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plutonium determination

The ehemieal yield of plutonium determined on traeer Pu or Pu, makes of 60 -70 %, amerieium and eurium, determined on traeer Am makes 50 - 70 %. [Pg.279]

The plutonium concentration in marine samples is principally due to environmental pollution caused by fallout from nuclear explosions and is generally at very low levels [75]. Environmental samples also contain microtraces of natural a emitters (uranium, thorium, and their decay products) which complicate the plutonium determinations [76]. Methods for the determination of plutonium in marine samples must therefore be very sensitive and selective. The methods reported for the chemical separation of plutonium are based on ion exchange resins [76-80] or liquid-liquid extraction with tertiary amines [81], organophosphorus compounds [82,83], and ketones [84,85]. [Pg.354]

For some applications, precipitation and co-precipitation, which is often incomplete, is utilized. As an example, for trace matrix separation the procedure for plutonium determination by ICP-SFMS in urine after trace matrix separation is summarized in Figure 6.29.86 87 The limit of detection for 239 Pu ultratrace determination in one litre of urine based on enrichment factor of 100 using the DIHEN in ICP-SFMS was 1.02- 10 18g mF1.86... [Pg.211]

Concentration in tissue (ash wt.) V Concentration in sediment (ash wt.). Plutonium determined... [Pg.258]

Chu, N., Plutonium determination in soil by leaching and ion exchange separation. Anal. Chem., 43 (1971) 449 52. [Pg.249]

Plutonium, determination of 154-157 Polyacrylamide, determination of 217 Polyaromatic hydrocarbons, determination of 110-112,127-133,... [Pg.493]

Neutron-rich lanthanide isotopes occur in the fission of uranium or plutonium and ate separated during the reprocessing of nuclear fuel wastes (see Nuclearreactors). Lanthanide isotopes can be produced by neutron bombardment, by radioactive decay of neighboring atoms, and by nuclear reactions in accelerators where the rate earths ate bombarded with charged particles. The rare-earth content of solid samples can be determined by neutron... [Pg.541]

The determination of critical si2e or mass of nuclear fuel is important for safety reasons. In the design of the atom bombs at Los Alamos, it was cmcial to know the critical mass, ie, that amount of highly enriched uranium or plutonium that would permit a chain reaction. A variety of assembhes were constmcted. Eor example, a bare metal sphere was found to have a critical mass of approximately 50 kg, whereas a natural uranium reflected 235u sphere had a critical mass of only 16 kg. [Pg.224]

The isotope plutonium-238 [13981 -16-3] Pu, is of technical importance because of the high heat that accompanies its radioactive decay. This isotope has been and is being used as fuel in small terrestrial and space nuclear-powered sources (3,4). Tu-based radioisotope thermal generator systems dehvered 7 W/kg and cost 120,000/W in 1991 (3). For some time, %Pu was considered to be the most promising power source for the radioisotope-powered artificial heart and for cardiovascular pacemakers. Usage of plutonium was discontinued, however, after it was determined that adequate elimination of penetrating radiation was uncertain (5) (see PROSTHETIC AND BIOMEDICAL devices). [Pg.191]

Plutonium(III), (IV), and (VI) complex stabiUty constants have been determined for some oxygen-donor (carboxylate) (114) and a few nitrogen-donor (115,116) ligands. Complexes of plutonium with natural complexants such as humic acids have also been studied extensively (89). [Pg.200]

On the basis of these facts, it was speculated that plutonium in its highest oxidation state is similar to uranium (VI) and in a lower state is similar to thorium (IV) and uranium (IV). It was reasoned that if plutonium existed normally as a stable plutonium (IV) ion, it would probably form insoluble compounds or stable complex ions analogous to those of similar ions, and that it would be desirable (as soon as sufficient plutonium became available) to determine the solubilities of such compounds as the fluoride, oxalate, phosphate, iodate, and peroxide. Such data were needed to confirm deductions based on the tracer experiments. [Pg.10]

A good deal was learned about plutonium metal, including the determination of its density by both capillary displacement and x-ray diffraction methods, its melting point and vapor pressure. [Pg.28]

Much was also learned at the Metallurgical Laboratory about the solution chemistry of plutonium during these first few years of investigation. This included elucidation of the ionic species present in aqueous solutions of different acids and determination... [Pg.28]

Analyses. Plutonium was determined radiometrically. A weighed sample of a compound was dissolved in 2M H2S0lt with a few drops of 90% HNOj to oxidize organic material, and an aliquot of this solution counted for alpha activity. [Pg.47]

Iodine was determined by an iodometric titration adapted from White and Secor.(3) Instead of the normal Carius combustion, iodide was separated from the samples either by slurrying in 6M NaOH, or by stirring the sample with liquid sodium-potassium (NaK) alloy, followed by dissolving excess NaK in ethanol. Precipitated plutonium hydroxides were filtered. Iodine was determined in the filtrate by bromine oxidation to iodate in an acetate buffer solution, destruction of the excess bromine with formic acid, acidifying with SO, addition of excess KI solution, and titrating the liberated iodine with standard sodium thiosulfate. The precision of the iodine determination is estimated to be about 5% of the measured value, principally due to incomplete extraction of iodine from the sample. [Pg.47]

The crystal structures of Hf 2 (OH) 2 (S0O 3 (H2O) i, (14) and Ce2(0H)2(S0i,)3 (H20)it (14) also have been determined and found to be isomorphous to the zirconium compound. The cell constants for this series of four isomorphous compounds reflect the effect of the ionic radii on the dimensions of the unit cell. The values for these cell constants are in Table II. Thus, the cell constants for the zirconium and hafnium compounds are nearly identical and smaller than the cell constants for the cerium and plutonium compounds which are also nearly identical. This trend is exactly that followed by the ionic radii of these elements. [Pg.58]

Vapor pressures of phases in these systems were measured by the Knudsen effusion technique. Use of mass spectrometer-target collection apparatus to perform thermodynamic studies is discussed. The prominent sublimation reactions for these phases below 2000 K was shown to involve formation of elemental plutonium vapor. Thermodynamic properties determined in this study were correlated with corresponding values obtained from theoretical predictions and from previous measurements on analogous intermetallics. [Pg.103]

Photodecomposition. A greyish-white film of solid material slowly formed along the bottom of the sample cell in PuF6 cells irradiated at 1064 nm. A similar film formed considerably faster in sample cells irradiated at 532 nm with the film forming on the entrance face of the cells as well as along the walls of the cell. Film formation was evident after less than a minute of irradiation at a laser fluence of 5 J/cm2 at 532 nm. The exact chemical composition of the film has not yet been determined. It is known that it contains plutonium and... [Pg.165]

The techniques used in the work have generally been spectroscopic visible-uv for quantitative determinations of species concentrations and infrared-Raman for structural aspects of the polymer. Although the former has often been used in the study of plutonium systems, there has been considerably less usage made of the latter in the actinide hydrolysis mechanisms. [Pg.234]

The physical nature of the sulfate complexes formed by plutonium(III) and plutonium(IV) in 1 M acid 2 M ionic strength perchlorate media has been inferred from thermodynamic parameters for complexation reactions and acid dependence of stability constants. The stability constants of 1 1 and 1 2 complexes were determined by solvent extraction and ion-exchange techniques, and the thermodynamic parameters calculated from the temperature dependence of the stability constants. The data are consistent with the formation of complexes of the form PuSOi,(n-2)+ for the 1 1 complexes of both plutonium(III) and plutonium(IV). The second HSO4 ligand appears to be added without deprotonation in both systems to form complexes of the form PuSOifHSOit(n"3) +. ... [Pg.251]

Prediction of the chemistry of plutonium in near-neutral aqueous media is highly dependent on understanding reactions that may be occurring in such media. One of the most important parameters is the stability and nature of complexes formed by plutonium in its four common oxidation states. Because Pu(III), Pu(IV), and Pu(VI) are readily hydrolysed, complexation reactions generally are studied in mildly to strongly acidic media. Data determined in acid media (and frequently at high concentrations of plutonium) then are used to predict the chemical speciation of plutonium at near-neutral pH and low concentrations of the metal ion. [Pg.251]

Visible and UV spectrophotometric techniques are most convenient for studying the polymer and various oxidation states of plutonium. The spectra of the plutonium states and the procedure for resolution of the concentrations were previously described (9 ). Changes in the relative concentrations of the oxidation states and of the polymer generally are determined from corresponding changes in the spectra and a comparison of the changes to standard spectra of the various states. These techniques have been used exclusively for studying the photochemistry of aqueous plutonium. [Pg.264]

Later experiments (4 ) were designed to determine a cell e.m.f. for the plutonium disproportionation system with a particular light source. Concentration quotients for the light and dark conditions, Qg and Qj, were determined, and an energy difference of 1.65 kcal (32 mV) was calculated by the relation -RTln C /Qd This reversible photochemical shift may be the only single-element system known at this time and certainly is the simplest such system. Even though the radioactive properties could prevent development and utilization of a plutonium photoconversion system, these studies certainly suggest that similar nonradioactive and more acceptable systems could be discovered and developed. [Pg.270]


See other pages where Plutonium determination is mentioned: [Pg.194]    [Pg.258]    [Pg.194]    [Pg.194]    [Pg.258]    [Pg.194]    [Pg.217]    [Pg.193]    [Pg.196]    [Pg.170]    [Pg.364]    [Pg.851]    [Pg.19]    [Pg.22]    [Pg.23]    [Pg.28]    [Pg.30]    [Pg.30]    [Pg.61]    [Pg.77]    [Pg.86]    [Pg.187]    [Pg.217]    [Pg.253]    [Pg.253]   
See also in sourсe #XX -- [ Pg.192 , Pg.336 , Pg.339 ]

See also in sourсe #XX -- [ Pg.154 , Pg.155 , Pg.156 ]




SEARCH



Plutonium determination dioxide

Plutonium determination radiochemical methods

Plutonium half-life determination

Procedure 19. Determination of Plutonium in Urine

Spectrophotometric Determination of Hexavalent Plutonium

© 2024 chempedia.info