Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resins Novolaks

Alkylated phenol derivatives are used as raw materials for the production of resins, novolaks (alcohol-soluble resins of the phenol—formaldehyde type), herbicides, insecticides, antioxidants, and other chemicals. The synthesis of 2,6-xylenol [576-26-1] h.a.s become commercially important since PPO resin, poly(2,6-dimethyl phenylene oxide), an engineering thermoplastic, was developed (114,115). The demand for (9-cresol and 2,6-xylenol (2,6-dimethylphenol) increased further in the 1980s along with the growing use of epoxy cresol novolak (ECN) in the electronics industries and poly(phenylene ether) resin in the automobile industries. The ECN is derived from o-cresol, and poly(phenylene ether) resin is derived from 2,6-xylenol. [Pg.53]

See B-stage resin C-stage resin novolak phenol-formaldehyde resin. [Pg.106]

Uraver. pSM Resins UK Ltd.] Etheri-fied phenolic resins, novolaks, tesols, precondensates of phenolics. [Pg.392]

Another important application for 4-/< octylphenol is in the production of phenoHc resins. Novolak resins based on 4-/( l -octylphenol are widely used in the tire industry as tacldfiers. The tackiness of these resins binds the many parts of an automobile tire prior to final vulcanization. A specialty use for novolak resins based on 4-/< oct5iphenol is the production of a zincated resin, which is formulated as a dispersion in water and coated onto paper in combination with encapsulated leuco dyes to yield carbonless copy paper (see Microencapsulation). Pressure from writing bursts the encapsulated leuco dye, which is converted from its colorless form to its colored form by the i ncated resin (53). Novolak resins based on 4-/< oct5dphenol are also used in the production of specialty printing inks. [Pg.68]

Synonyms Alkyl-phenol formaldehyde resin A-stage resin Novolac resin Novolak resin One-stage resin PF Phenol-formaldehyde Phenol-... [Pg.1268]

Novolac resin. See Phenolic resin Novolak resin. See Novolac resin Phenolic resin... [Pg.2894]

Calixarenes, coined by C. D. Gutsche, are the cyclic oligomers produced by condensation of phenols and formaldehyde (1). In other words, they are cyclic phenol resins, but their physical and chemical properties are much different from those of linear phenol resins. Many of the calixarenes are crystalline and generally have poor solubilities in either water or in organic solvents. Their melting points are generally high, while ordinary phenol resins, novolaks, soften below 150°C. [Pg.249]

Phenol formaldehyde resin (Novolak), 5% petrolatum. In urethane adhesives in heel and toe reinforcements... [Pg.1094]

Novolak resins (novolaks or novolacs) are normally prepared by the interaction of a molar excess of phenol with formaldehyde (commonly about 1.25 1) under acidic conditions. [Pg.287]

Fuertes and co-woikers [12, 46 8, 78] investigated intensively the preparation of caibon membranes from PR precursors. According to Centeno and Fuertes [12], they coated a small quantity of liquid phenohc resin (Novolak type) on the finely polished surface of a porous carbon disk by means of a spin coating technique. The supported phenolic resin film was cured in air at 150°C for 2 h, and then carbonization was carried out in a vertical tubular furnace (Carbolite) at different temperatures (between 500 and 1,000°C) under vacuum. Figure 4.6 shows the SEM micrograph of the membranes. The polymeric film (Fig. 4.6a) coated on top of the porous substrate is dense and has a thickness of around 2 pm. The thickness of the carbon membrane shown in Fig. 4.6b is also about 2 pm. Figure 4.6c shows the top view of the fractured membrane. The top smface is veiy smooth. Helium gas permeance of membranes carbonized at different temperatures is shown in Fig. 4.7. [Pg.39]

Novolak photoresist Novolak process Novolak resin... [Pg.689]

In the case of phenoHcs, it is possible to make linear thermoplastic polymers called novolaks, but this is done by reaction of less than one mole of formaldehyde with one mole of phenol the resulting resin has a large excess of free phenol. Usually in appHcation hexamethylene tetramine (HEXA) is added to the novolak. When heated, the HEXA breaks down into ammonia and formaldehyde and enters the reaction to form a light degree of cross-links in the final product. [Pg.531]

Epoxidized phenol novolak and cresol novolak are the most common curing agents. The composition of the resin and hardener system is optimized for each specific appHcation eg, incorporating phenol novolaks in the matrix resin can iacrease cure speed. [Pg.531]

Early phenoHc resins consisted of self-curing, resole-type products made with excess formaldehyde, and novolaks, which are thermoplastic in nature and require a hardener. The early products produced by General BakeHte were used in molded parts, insulating varnishes, laminated sheets, and industrial coatings. These areas stiH remain important appHcations, but have been joined by numerous others such as wood bonding, fiber bonding, and plywood adhesives. The number of producers in the 1990s is approximately 20 in the United States and over 60 worldwide. [Pg.292]

Other Reactants. Other reactants are used in smaller amounts to provide phenoHc resins that have specific properties, especially coatings appHcations. Aniline had been incorporated into both resoles and novolaks but this practice has been generally discontinued because of the toxicity of aromatic amines. Other materials include rosin (abietic acid), dicyclopentadiene, unsaturated oils such as tung oil and linseed oil, and polyvalent cations for cross-linking. [Pg.293]

Strong-Acid Catalysts, Novolak Resins. PhenoHc novolaks are thermoplastic resins having a molecular weight of 500—5000 and a glass-transition temperature, T, of 45—70°C. The phenol—formaldehyde reactions are carried to their energetic completion, allowing isolation of the resin ... [Pg.293]

The typical acid catalysts used for novolak resins are sulfuric acid, sulfonic acid, oxaUc acid, or occasionally phosphoric acid. Hydrochloric acid, although once widely used, has been abandoned because of the possible formation of toxic chloromethyl ether by-products. The type of acid catalyst used and reaction conditions affect resin stmcture and properties. For example, oxaUc acid, used for resins chosen for electrical appHcations, decomposes into volatile by-products at elevated processing temperatures. OxaUc acid-cataly2ed novolaks contain small amounts (1—2% of the original formaldehyde) of ben2odioxanes formed by the cycli2ation and dehydration of the ben2yl alcohol hemiformal intermediates. [Pg.294]

Alkaline Catalysts, Resoles. Resole-type phenoHc resins are produced with a molar ratio of formaldehyde to phenol of 1.2 1 to 3.0 1. For substituted phenols, the ratio is usually 1.2 1 to 1.8 1. Common alkaline catalysts are NaOH, Ca(OH)2, and Ba(OH)2. Whereas novolak resins and strong acid catalysis result in a limited number of stmctures and properties, resoles cover a much wider spectmm. Resoles may be soHds or Hquids, water-soluble or -insoluble, alkaline or neutral, slowly curing or highly reactive. In the first step, the phenolate anion is formed by delocali2ation of the negative charge to the ortho and para positions. [Pg.295]

With a bulk process, resole resins, in neat or concentrated form, must be produced in small batches (ca 2—9.5 m ) in order to maintain control of the reaction and obtain a uniform product. On the other hand, if the product contains a large amount of water, such as Hquid plywood adhesives, large reactors (19 m ) can be used. Melt-stable products such as novolaks can be prepared in large batches (19—38 m ) if the exotherms can be controlled. [Pg.297]

Novolak Resins. In a conventional novolak process, molten phenol is placed into the reactor, foHowed by a precise amount of acid catalyst. The formaldehyde solution is added at a temperature near 90°C and a formaldehyde-to-phenol molar ratio of 0.75 1 to 0.85 1. For safety reasons, slow continuous or stepwise addition of formaldehyde is preferred over adding the entire charge at once. Reaction enthalpy has been reported to be above 80 kj /mol (19 kcal/mol) (29,30). The heat of reaction is removed by refluxing the water combined with the formaldehyde or by using a small amount of a volatile solvent such as toluene. Toluene and xylene are used for azeotropic distillation. FoHowing decantation, the toluene or xylene is returned to the reactor. [Pg.297]

The reaction is completed after 6—8 h at 95°C volatiles, water, and some free phenol are removed by vacuum stripping up to 140—170°C. For resins requiring phenol in only trace amounts, such as epoxy hardeners, steam distillation or steam stripping may be used. Both water and free phenol affect the cure and final resin properties, which are monitored in routine quaHty control testing by gc. OxaHc acid (1—2 parts per 100 parts phenol) does not require neutralization because it decomposes to CO, CO2, and water furthermore, it produces milder reactions and low color. Sulfuric and sulfonic acids are strong catalysts and require neutralization with lime 0.1 parts of sulfuric acid per 100 parts of phenol are used. A continuous process for novolak resin production has been described (31,32). An alternative process for making novolaks without acid catalysis has also been reported (33), which uses a... [Pg.297]

Resoles. Like the novolak processes, a typical resole process consists of reaction, dehydration, and finishing. Phenol and formaldehyde solution are added all at once to the reactor at a molar ratio of formaldehyde to phenol of 1.2—3.0 1. Catalyst is added and the pH is checked and adjusted if necessary. The catalyst concentration can range from 1—5% for NaOH, 3—6% for Ba(OH)2, and 6—12% for hexa. A reaction temperature of 80—95°C is used with vacuum-reflux control. The high concentration of water and lower enthalpy compared to novolaks allows better exotherm control. In the reaction phase, the temperature is held at 80—90°C and vacuum-refluxing lasts from 1—3 h as determined in the development phase. SoHd resins and certain hquid resins are dehydrated as quickly as possible to prevent overreacting or gelation. The end point is found by manual determination of a specific hot-plate gel time, which decreases as the polymerization advances. Automation includes on-line viscosity measurement, gc, and gpc. [Pg.298]

In the post-dispersion process, the soHd phenoHc resin is added to a mixture of water, cosolvent, and dispersant at high shear mixing, possibly with heating. The cosolvent, frequently an alcohol or glycol ether, and heat soften the resin and permit small particles to form. On cooling, the resin particles, stabilized by dispersant and perhaps thickener, harden and resist settling and agglomeration. Both resole and novolak resins have been made by this process (25). [Pg.298]

In some resole appHcations, such as foam and foundry binders, a rapid cure of a Hquid resin is obtained at RT with strong acid. The reactions proceed in the same manner as those of novolak resin formation. Methylol groups react at ortho and para phenoHc hydrogen to give diphenyknethane units (41). [Pg.298]

Novolaks. Novolak resins are typically cured with 5—15% hexa as the cross-linking agent. The reaction mechanism and reactive intermediates have been studied by classical chemical techniques (3,4) and the results showed that as much as 75% of nitrogen is chemically bound. More recent studies of resin cure (42—45) have made use of tga, dta, gc, k, and nmr (15). They confirm that the cure begins with the formation of benzoxazine (12), progresses through a benzyl amine intermediate, and finally forms (hydroxy)diphenyknethanes (DPM). [Pg.298]


See other pages where Resins Novolaks is mentioned: [Pg.689]    [Pg.33]    [Pg.200]    [Pg.329]    [Pg.689]    [Pg.33]    [Pg.200]    [Pg.329]    [Pg.259]    [Pg.266]    [Pg.351]    [Pg.367]    [Pg.367]    [Pg.531]    [Pg.293]    [Pg.294]    [Pg.294]    [Pg.297]    [Pg.298]    [Pg.299]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



Chlorinated Novolak resins

Cresol-substituted benzaldehyde Novolak resins

Cross-linking Novolak resins

Functionally substituted Novolak resins

M-Cresol-benzaldehyde Novolak resin

Novolak resin cresol-formaldehyde

Novolak resin images

Novolak resin poly

Novolak resin precursors

Novolak resin preparations

Novolak resin pyrolysis

Novolak resin rates

Novolak resin resist patterns

Novolak resin resist solutions

Novolak resins

Novolak resins

Novolaks

Novolaks, linear resins

Phenol formaldehyde resin (novolak) PF

© 2024 chempedia.info