Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resin divinylbenzene

To illustrate the specific operations involved, the scheme below shows the first steps and the final detachment reaction of a peptide synthesis starting from the carboxyl terminal. N-Boc-glycine is attached to chloromethylated styrene-divinylbenzene copolymer resin. This polymer swells in organic solvents but is completely insoluble. ) Treatment with HCl in acetic acid removes the fert-butoxycarbonyl (Boc) group as isobutene and carbon dioxide. The resulting amine hydrochloride is neutralized with triethylamine in DMF. [Pg.232]

FIGURE 27 14 A section of polystyrene showing one of the benzene rings modified by chloromethylation Indi vidual polystyrene chains in the resin used in solid phase peptide synthesis are con nected to one another at various points (cross linked) by adding a small amount of p divinylbenzene to the styrene monomer The chloromethylation step is carried out under conditions such that only about 10% of the benzene rings bear —CH2CI groups... [Pg.1142]

Structures of styrene, divinylbenzene, and a styrene-divinylbenzene co-polymer modified for use as an ion-exchange resin. The ion-exchange sites, indicated by R, are mostly in the para position and are not necessarily bound to all styrene units. [Pg.591]

Two classes of micron-sized stationary phases have been encountered in this section silica particles and cross-linked polymer resin beads. Both materials are porous, with pore sizes ranging from approximately 50 to 4000 A for silica particles and from 50 to 1,000,000 A for divinylbenzene cross-linked polystyrene resins. In size-exclusion chromatography, also called molecular-exclusion or gel-permeation chromatography, separation is based on the solute s ability to enter into the pores of the column packing. Smaller solutes spend proportionally more time within the pores and, consequently, take longer to elute from the column. [Pg.593]

The organic and aqueous phases are prepared in separate tanks before transferring to the reaction ketde. In the manufacture of a styrenic copolymer, predeterrnined amounts of styrene (1) and divinylbenzene (2) are mixed together in the organic phase tank. Styrene is the principal constituent, and is usually about 90—95 wt % of the formulation. The other 5—10% is DVB. It is required to link chains of linear polystyrene together as polymerization proceeds. DVB is referred to as a cross-linker. Without it, functionalized polystyrene would be much too soluble to perform as an ion-exchange resin. Ethylene—methacrylate [97-90-5] and to a lesser degree trivinylbenzene [1322-23-2] are occasionally used as substitutes for DVB. [Pg.373]

The point at which two polymeric chains are joined together by a cross-linker such as divinylbenzene, or sites where tertiary hydrogens are located in the stmcture, are other locations for oxidative attack. In both cation- and anion-exchange resins, oxidative attack results in the removal of cross-linking. [Pg.380]

Polypeptide Synthesis and Analysis. Sihca or controUed-pore glass supports treated with (chloromethyl)phenylethyltrimethoxysilane [68128-25-6] or its derivatives are replacing chloromethylated styrene—divinylbenzene (Merrifield resin) as supports in polypeptide synthesis. The sdylated support reacts with the triethyl ammonium salt of a protected amino acid. Once the initial amino acid residue has been coupled to the support, a variety of peptide synthesis methods can be used (34). At the completion of synthesis, the anchored peptide is separated from the support with hydrogen bromide in acetic acid (see Protein engineering Proteins). [Pg.73]

Divinylbenzene. This is a specialty monomer used primarily to make cross-linked polystyrene resins. Pure divinylbenzene (DVB) monomer is highly reactive polymericaHy and is impractical to produce and store. Commercial DVB monomer (76—79) is generally manufactured and suppHed as mixtures of m- and -divinylbenzenes and ethylvinylbenzenes. DVB products are designated by commercial grades in accordance with the divinylbenzene content. Physical properties of DVB-22 and DVB-55 are shown in Table 10. Typical analyses of DVB-22 and DVB-55 are shown in Table 11. Divinylbenzene [1321 -74-0] is readily polymerized to give britde insoluble polymers even at ambient temperatures. The product is heavily inhibited with TBC and sulfur to minimize polymerization and oxidation. [Pg.489]

Divinylbenzene copolymers with styrene are produced extensively as supports for the active sites of ion-exchange resins and in biochemical synthesis. About 1—10 wt % divinylbenzene is used, depending on the required rigidity of the cross-linked gel, and the polymerization is carried out as a suspension of the monomer-phase droplets in water, usually as a batch process. Several studies have been reported on the reaction kinetics (200,201). [Pg.520]

The resin system V-378A, mentioned eadier, is a bismaleimide system that has been modified with divinylbenzene to achieve drape and tack in prepreg form. Divinylbenzene-modifted BMI is appreciated because of its outstanding hot—wet environmental resistance and epoxylike cure (18). [Pg.29]

Other developments in chelating resins include fibers made from poly(ethylene glycol) and poly(vinyl alcohol) to which EDA was attached with epichl orohydrin (281) and a styrene—divinylbenzene resin with pendant EDTA or DETPA groups (282). [Pg.48]

Ion Exchange Resins - Spectra/Gel Ion Exchange resins are ion exchange media for use in low-pressure liquid chromatography. They are based on a polystyrene/divinylbenzene support and are available for both anion and cation exchange applications. This site will give you a reasonable... [Pg.440]

A typical system is a chlorome thy late d polystyrene resin cross-linked with 2 or 4% p-divinylbenzene and different amounts of chloromethylated sites (0.7—3.7 mequiv. of Cl per g of polymer) . The reaction is shown schematically in Eq. (6.19) and additional information may be found in Sects. 8.3 and 8.8. [Pg.277]

A macroporous polystyrene-divinylbenzene copolymer is produced by a suspension polymerization of a mixture of monomers in the presence of water as a precipitant. This is substantially immiscible with the monomer mixture but is solubilized with a monomer mixture by micelle-forming mechanisms in the presence of the surfactant sodium bis(2-ethylhexylsulfosuccinate) (22). The porosity of percentage void volume of macroporous resin particles is related to percentage weight of the composite (50% precipitant, 50% solvent) in the monomer mixture. [Pg.8]

TSK-GEL H type columns are for gel-permeation chromatography (GPC) in organic solvents. They are packed with porous poly(styrene-divinylbenzene) resins that have a high degree of cross-linking. [Pg.135]

It is well known that anionic samples tend to adsorb on poly(styrene-divinylbenzene) resins. However, cationic samples tend to be repelled from the resins. The mechanism seems to be an ionic interaction, although the poly(styrene-divinylbenzene) resin should be neutral. The reason is not well clarified. Therefore, it is recommended to add some salt in the elution solvent when adsorption or repulsion is observed in the analyses of polar samples. For example, polysulfone can be analyzed successfully using dimethylformamide containing 10 mM lithium bromide as an elution solvent, as shown in Fig. 4.42. [Pg.144]

The next major bonded phase project was the development of the GBR resin, which stands for modified glucose bonded on both the backbone and the ring of basic PDVB gels. The manufacture of this product was ultimately achieved, as outlined later. The gel is first brominated, which places bromine atoms on both tertiary hydrogens of the PDVB. The brominated gel is then reacted with chlorosulfonic acid, and a specially treated reduced D-glucosamine is coupled to the gel. This process has the potential to covalently bond up to three sugar residues to each available divinylbenzene residue in the PDVB polymer. The exact reaction conditions used are proprietary however, the surface of the finished product is believed to look similar to Figs. 13.11 and 13.12. [Pg.374]

A 90 X 6 cm column was packed with 2 kg of granular Amberlite IRA-410 resin in the chloride form (a vinylpyridine/divinylbenzene copolymer quaternized with dimethyl sulfate and converted to chloride) and washed with 3 kg of a 10% aqueous solution of sodium... [Pg.793]

The starting material for the synthesis of this chelating resin is chloromethylated styrene-divinylbenzene, which undergoes an amination reaction and is then treated with monochloracetic acid ... [Pg.203]

Purification of the activation products (PMs). The methylamine activation product dissolved in methanol is purified by chromatography, first on a column of silica gel using a mixed solvent of chloroform/ethanol, followed by reversed-phase HPLC on a column of divinylbenzene resin (such as Jordi Reversed-Phase and Hamilton PRP-1) using various solvent systems suitable for the target substance (for example, acetonitrile/water containing 0.15% acetic acid). [Pg.284]

Recently, new approaches of sorbent construction for reversed-phase chromatography have been developed. Silicas modified with hydrocarbon chains have been investigated the most and broadly utilized for these aims. Silica-based materials possess sufficient stability only in the pH 2-8 range. Polymeric HPLC sorbents remove these limitations. Tweeten et al. [108] demonstrated the application of stroongly crosslinked styrene-divinylbenzene resins for reversed-phase chromatography of peptides. [Pg.167]


See other pages where Resin divinylbenzene is mentioned: [Pg.492]    [Pg.816]    [Pg.816]    [Pg.6961]    [Pg.155]    [Pg.492]    [Pg.816]    [Pg.816]    [Pg.6961]    [Pg.155]    [Pg.13]    [Pg.55]    [Pg.235]    [Pg.1109]    [Pg.1109]    [Pg.196]    [Pg.590]    [Pg.373]    [Pg.490]    [Pg.26]    [Pg.376]    [Pg.74]    [Pg.388]    [Pg.8]    [Pg.19]    [Pg.21]    [Pg.163]    [Pg.1141]    [Pg.84]    [Pg.69]    [Pg.187]    [Pg.187]    [Pg.203]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.5 , Pg.48 , Pg.583 , Pg.1278 ]




SEARCH



Characteristics of Styrene-Divinylbenzene Ion Exchange Resins as Catalyst

Divinylbenzene

Divinylbenzene polymeric resins

Divinylbenzenes

Polystyrene divinylbenzene copolymer resins

Polystyrene divinylbenzene copolymer resins phases

Polystyrene-divinylbenzene resins

Resins ethylvinylbenzene/divinylbenzene

Resins prepared with divinylbenzene

Styrene-divinylbenzene resins

© 2024 chempedia.info