Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Residuals from alkali metal

A convenient method is the spectrometric determination of Li in aqueous solution by atomic absorption spectrometry (AAS), using an acetylene flame—the most common technique for this analyte. The instrument has an emission lamp containing Li, and one of the spectral lines of the emission spectrum is chosen, according to the concentration of the sample, as shown in Table 2. The solution is fed by a nebuhzer into the flame and the absorption caused by the Li atoms in the sample is recorded and converted to a concentration aided by a calibration standard. Possible interference can be expected from alkali metal atoms, for example, airborne trace impurities, that ionize in the flame. These effects are canceled by adding 2000 mg of K per hter of sample matrix. The method covers a wide range of concentrations, from trace analysis at about 20 xg L to brines at about 32 g L as summarized in Table 2. Organic samples have to be mineralized and the inorganic residue dissolved in water. The AAS method for determination of Li in biomedical applications has been reviewed . [Pg.324]

The organometallic compounds prepared from alkali metal derivatives of metal carbonyls include compounds in which a transition metal of a metal carbonyl residue is cr-bonded to another atom such as a carbon atom in an alkyl, acyl, aryl, or perfluoroalkyl group, to the heavier congeners of carbon —silicon, germanium, tin, and lead—to mercury and gold which form unusually stable compounds, and even to other transition metals. The preparation and properties of all of these classes of compounds will be considered and, for the sake of completeness, a few related compounds prepared by routes other than those involving anionic metal carbonyl derivatives will be discussed. [Pg.158]

Residuals Produced The residual produced from the alkali metal dechlorination of soils is reported to be an alkaline soil which requires neutralization. [Pg.147]

In Pedersen s early experiments, the relative binding of cations by crown ethers was assessed by extraction of alkali metal picrates into an organic phase. In these experiments, the crown ether served to draw into the organic phase a colored molecule which was ordinarily insoluble in this medium. An extension and elaboration of this notion has been developed by Dix and Vdgtle and Nakamura, Takagi, and Ueno In efforts by both of these groups, crown ether molecules were appended to chromophoric or colored residues. Ion-selective extraction and interaction with the crown and/or chromophore could produce changes in the absorption spectrum. Examples of molecules so constructed are illustrated below as 7 7 and 18 from refs. 32 and 131, respectively. [Pg.166]

A dispersant that can be used in drilling fluids, spacer fluids, cement slurries, completion fluids, and mixtures of drilling fluids and cement slurries controls the rheologic properties of and enhances the filtrate control in these fluids. The dispersant consists of polymers derived from monomeric residues, including low-molecular-weight olefins that may be sulfonated or phosphonated, unsaturated dicarboxylic acids, ethylenically unsaturated anhydrides, unsaturated aliphatic monocarboxylic acids, vinyl alcohols and diols, and sulfonated or phosphonated styrene. The sulfonic acid, phosphonic acid, and carboxylic acid groups on the polymers may be present in neutralized form as alkali metal or ammonium salts [192,193]. [Pg.311]

In calixarene-based compound M-8 (Figure 10.28), bearing four anthracene moieties on the lower rim, some changes in fluorescence intensity were observed on binding of alkali metal ions but no excimer emission was detected. Quenching of the fluorescence by Na+ may arise from interaction of four anthracene residues brought in closer proximity to one another enhancement of fluorescence by K+ is difficult to explain. [Pg.313]

In response to a statement [1] that alloys of 2 alkali-metals (Li-Na, K-Na) can be prepared in small amounts by beating the solid components together, without heating in the latter case, it was emphasised that the real hazard arises not from reaction of the surface coating of potassium superoxide with potassium, but with residues of oil or organic matter on the potassium which will explode under impaction with the superoxide [2] - [4]. [Pg.32]

Rubidium is recovered from its ore lepidolite or pollucite. Mineral lepidolite is a lithium mica having a composition KRbLi(OH,F)Al2Si30io. The ore is opened by fusion with gypsum (potassium sulfate) or with a mixture of barium sulfate and barium carbonate. The fused mass is extracted with hot water to leach out water-soluble alums of cesium, rubidium, and potassium. The solution is filtered to remove insoluble residues. Alums of alkali metals are separated from solution by fractional crystallization. Solubility of rubidium alum or rubidium aluminum sulfate dodecahydrate, RbAl(S04)2 I2H2O falls between potassium and cesium alum. [Pg.796]

One gram of silver /3-alumina (see above) is placed into a fused quartz test tube about 2 cm in diameter and about 14 cm long. Five grams of lithium chloride is added. It is important that the lithium chloride used have a very low content of other alkali metal impurities, except Cs, since the ion exchange equilibria greatly favor the presence of the other alkali metals in the /3-alumina crystals over lithium. Essentially all of the impurity ends up in the crystals. The fused-quartz test tube is heated to 650° in a furnace. For crystals 1-cm in diameter the time to reach 99% equilibrium is approximately 16 hours. The molten salt is decanted and the crystals are allowed to cool to room temperature. Methyl alcohol containing about 10% propylamine or ethylenediamine is used to wash the product and thereby remove the silver chloride and residual lithium salts. The sample is dried at 400° and stored in a dessicator. The lithium /3-alumina crystals contain less than 0.05% Ag. If the lithium chloride used contains a trace of sodium or potassium, it can be prepurified by treatment with silver /3-alumina at 650°. Each gram of silver /3-alumina will remove about 30 mg of sodium from the melt. The molten lithium chloride, after decantation from the pretreatment silver /3-alumina, can be used to prepare the product, lithium 0-alumina. [Pg.54]

Figure 6 shows the proposed subunit assembly structure of the nicotinic acetylcholine receptor channel." The inner wall of the lower half part is surrounded by hydroxyl side chains from Ser and Thr, and by carboxylates or amides from Asp, Glu, and Gin at the mouth. Furthermore, a Lys residue seems to offer ion pairing with the carboxylate at the mouth. Considering the possibly similar stabilizing effect of ether and hydroxyl groups to cations, the proposed artificial supramolecular channel could be regarded as a good model of the acetylcholine receptor channel, which selects cations over anions, but does not discriminate between alkali metals. [Pg.171]

The residue from alcoholic digestion is then treated with a limited quantity of cold water (eight times its volume) and, after standing, filtered. The filtrate contains alkali salts, and sulphates of alkaline earths, and of metals. These he separated usually by their varying solubilities, identified by their crystallized form and other properties. The residue from the cold water extraction was then boiled... [Pg.448]

Alkali metals. The principal hazards involved are l)explosions or fire resulting from contact with water, chlorinated hydrocarbons, or other reactive agents 2)fires resulting from exposure to air 3)personnel injury from direct contact with hot alkali metals and 4)caustic soda burns from the residue of a Na-H20 reaction. Storage areas must be dry. Protective clothing must be worn (Ref 105)... [Pg.428]

On the other hand, application of alkali metal amalgam permits the slowing down of the reaction of metals with alcohols, which is used in the industrial production of alkali metals alkoxides. Production of NaOR by Mathieson Alkali Works is based, for instance, on the reaction of sodium amalgam (formed as a result of the electrolysis of aqueous NaCl solution with the mercury cathode) with alcohol NaOR ROH is isolated from the solutions. Na residue in the amalgam is hydrolyzed, the obtained mixture is returned to the electrolyz-... [Pg.12]


See other pages where Residuals from alkali metal is mentioned: [Pg.5]    [Pg.214]    [Pg.601]    [Pg.385]    [Pg.600]    [Pg.347]    [Pg.65]    [Pg.1823]    [Pg.77]    [Pg.3]    [Pg.84]    [Pg.211]    [Pg.55]    [Pg.377]    [Pg.249]    [Pg.129]    [Pg.72]    [Pg.279]    [Pg.166]    [Pg.339]    [Pg.512]    [Pg.22]    [Pg.92]    [Pg.129]    [Pg.488]    [Pg.246]    [Pg.681]    [Pg.1910]    [Pg.1823]    [Pg.306]    [Pg.306]    [Pg.236]   


SEARCH



Metal , residual

Metal residues

© 2024 chempedia.info