Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Replacement fluids selection

Selection and care of the hydraulic fluid for a machine will have an important effect on how it performs and on the life of the hydraulic components. During the design of equipment that requires fluid power, many factors are considered in selecting the type of system to be used-hydraulic, pneumatic, or a combination of the two. Some of the factors required are speed and accuracy of operation, surrounding atmospheric conditions, economic conditions, availability of replacement fluid, required pressure level, operating temperature range, contamination possibilities, cost of transmission lines, limitations of the equipment, lubricity, safety to the operators, and expected service life of the equipment. [Pg.596]

Many rubber products must operate in contact with fluids of various types. An important part of compound design is formulation for resistance to fluids. Selection of suitable polymer is important, (e.g., use of a polar rubber for oil resistance), while for minimal swelling it is desirable to have a high crosslink density. Other design considerations are also important, such as the effect of the liquid on the filler and plasticiser systems. Plasticisers will often be extracted by fluids and occasionally replaced by the fluid within the compound. Filler effects are discussed in Section 7.6.3.5. [Pg.325]

Downstream of the thermal processor is an in-line analytical system capable of cryogenic trapping, separation, and detection of thermal decomposition products. For the replacement fluids, the thermal decomposition products were trapped using liquid nitrogen coolant at the head of a capillary GC column housed within an HP 5890 GC, The GC was then used to separate the products, and detection was accomplished using an HP 5970B mass selective detector (MSD). The MSD is a compact quadrupole mass spectrometer which permits analytes to be identified via their fragmentation patterns and quantified via peak areas. [Pg.190]

The main objective of this paper is to present a critical review of the many steps that have led to the selection of replacement fluids for PCBs. Methods and tests, electrical as well as chemical, physical and environmental, are suggested and their comparative merits are discussed for various dielectric liquids. [Pg.207]

Short-chain alkylated biphenyls are the principal biphenyl derivatives in commercial use. They are generally produced by Hquid-phase Friedel-Crafts alkylation of biphenyl with ethylene, propylene, or mixed butenes. A series of mixed ethylated biphenyl heat-transfer fluids (trademarked Therm S-600, 700, 800) is marketed by Nippon Steel. A mixed diethylbenzene—ethylbiphenyl heat-transfer fluid is also available from Dow (63). Monoisopropylbiphenyl [25640-78-2] largely as a mixture of meta- and para-isomers is produced by Koch Chemical Co. Monoisopropylbiphenyl (MIPB) was selected by Westinghouse (64,65) as a PCB replacement in capacitors and this is its primary appHcation today. For a time MIPB was also employed as a PCB replacement in pressure sensitive copy paper, but this outlet has since given way to other dye solvents. A similar product consisting of a mixture of j -butylbiphenyl isomers [38784-93-9] (66) is currently the favored dye solvent for pressure sensitive copy paper (67) manufactured in the United States. [Pg.119]

The efficiency of many CSPs increases dramatically when liquid eluents are replaced with sub- or supercritical fluids. During a comparison of LC and SFC performed with a Chiralcel OD CSP, Lynam and Nicolas reported that the number of theoretical plates obtained was three to five times higher in SFC than in LC [26]. The separation of metoprolol enantiomers by LC and SFC on a Chiralcel OD CSP is illustrated in Fig. 12-2. Although impressive selectivity is achieved by both techniques, resolution is higher in SFC (R = 12.7) than in LC (R = 4.8), and the higher flowrate in SFC reduces the analysis time. The increased efficiency of SFC also improves peak symmetry. [Pg.304]

An example of a modem instrument of this type is the Coming Model 410 flame photometer. This model can incorporate a lineariser module which provides a direct concentration read-out for a range of clinical specimens. Flame photometers are still widely used especially for the determination of alkali metals in body fluids, but are now being replaced in clinical laboratories by ion-selective electrode procedures (see Section 15.7). [Pg.798]

This allows the pressure, which has significance only when the fluid experiencing it is named, to be replaced by a dimensionless group of properties which has significance for all fluids. Thus, the first requirement in constructing a model of a system is that the inlet pressures should be selected so that the density ratio of the two phases in the model is the same as that in the system... [Pg.281]

This pump is the same in principle as the piston type but differs in that the gland is at one end of the cylinder making its replacement easier than with the standard piston type. The sealing of piston and ram pumps has been much improved but, because of the nature of the fluids frequently used, care in selecting and maintaining the seal is very important. The piston or ram pump may be used for injections of small quantities of inhibitors to polymerisation units or of corrosion inhibitors to high pressure systems, and also for boiler feed water applications. [Pg.318]

The tuning of solubility with a relatively small jump or fall in pressure can possibly bestow many benefits with respect to rates, yields, and selectivity. Reaction parameters can be changed over a wide range. Replacement of solvents with high boiling points by supercritical (SC) fluids offers distinct advantages with respect to removal of the solvent. SC fluids like CO2 are cheap and environmentally friendly the critical temperature of CO2 is 31 C and the critical pressure 73.8 atm (Poliakoff and Howdle, 1995). Eckert and Chandler (1998) have given many examples of the use of SC fluids. Alkylation of phenol with tcrt-butanol in near critical water at 275 °C allows 2- erf-butyl phenol to be formed (a major product when the reaction is kinetically controlled 4-rert-butyl phenol is the major product, when the reaction is... [Pg.172]

Synthetic-based muds are mineral oil muds in which the oil phase has been replaced with a synthetic fluid, such as ether, ester, PAO, or linear alkylbenzene, and are available from major mud companies. The mud selection process is based on the mud s technical performance, environmental impact, and financial impact. Synthetic muds are expensive. Two factors influence the direct cost unit or per-barrel cost and mud losses. Synthetic muds are the technical equivalent of oil-based muds when drilling intermediate hole sections. They are technically superior to all water-based systems when drilling reactive shales in directional wells. However, with efficient solids-control equipment, optimized drilling, and good housekeeping practices, the cost of the synthetic mud can be brought to a level comparable with oil-based mud [1308]. [Pg.6]

Using the flush configuration (Chapter 2), we continuously displace the pore fluid with the flooding solution. In this way, we replace the pore fluid in the system a total of ten times over the course of the simulated flood, which lasts twenty days. Because of the short interval selected for the flood, we assume that the pore fluid does not remain in equilibrium with quartz or framework silicates such as feldspar. [Pg.443]

Vasopressin causes vasoconstrictive effects that, unlike adrenergic receptor agonists, are preserved during hypoxia and severe acidosis. It also causes vasodilation in the pulmonary, coronary, and selected renal vascular beds that may reduce pulmonary artery pressure and preserve cardiac and renal function. However, based on available evidence, vasopressin is not recommended as a replacement for norepinephrine or dopamine in patients with septic shock but may be considered in patients who are refractory to catecholamine vasopressors despite adequate fluid resuscitation. If used, the dose should not exceed 0.01 to 0.04 units/min. [Pg.167]

Random selection with replacement means that elements from the set are returned to the selection pool after they are selected. This implies that members of the set can be selected more than once. There appears to be some confusion in the literature on the use of random sampling with or without replacement. However, because the notional particles represent a composition PDF with fixed statistical properties (and not fluid particles), selection with replacement is the correct choice. Moreover, it is the only choice that will allow iV to be different in every cell. For example, in the extreme case where Ni = 1 and Ni = 100, (7.16) might yield W)v = 10 so that ten notional particles must be selected from the first grid cell. Since N = 1, this can only be accomplished with replacement. [Pg.354]

Framework of load compensator on plane wings injection moulding of carbon fibre reinforced PEEK replaces the aluminium alloy previously used. This part plays a critical role in plane safety and must resist the static and dynamic stresses and hydraulic fluids. The grade selected after many tests has a high fluidity allowing the manufacture of parts with dimensions of 200 mm by 400 mm. With 30% carbon fibre reinforcement, this PEEK grade ... [Pg.52]

The membrane surface may become passivated by some solution components that are strongly adsorbed. This effect is often encountered in measurements on biological fluids containing proteins. These adsorption effects can sometimes be prevented by selecting a suitable compoation of the sample and standard solutions for example by adding trypsin and triethanolamine to dissolve proteins [108]. Passive electrodes can sometimes be reactivated by soaking in suitable solutions (for example pepsin in 0.1M HCl [68]) and in more serious cases the membrane must be replaced or a solid membrane be repolished. [Pg.99]

In order to determine an optimum dosage regimen for a drug and to determine its mode of metabolism, methods for analysis of the drug and its metabolites in blood, urine and tissues have to be developed. Analysis of drugs in biological fluids and tissues by GC is quite common although GC-MS (see Ch. 9) has replaced many GC methods which are reliant on less selective types of detector. [Pg.233]

The benefits from tuning the solvent system can be tremendous. Again, remarkable opportunities exist for the fruitful exploitation of the special properties of supercritical and near-critical fluids as solvents for chemical reactions. Solution properties may be tuned, with thermodynamic conditions or cosolvents, to modify rates, yields, and selectivities, and supercritical fluids offer greatly enhanced mass transfer for heterogeneous reactions. Also, both supercritical fluids and near-critical water can often replace environmentally undesirable solvents or catalysts, or avoid undesirable byproducts. Furthermore, rational design of solvent systems can also modify reactions to facilitate process separations (Eckert and Chandler, 1998). [Pg.74]


See other pages where Replacement fluids selection is mentioned: [Pg.56]    [Pg.1540]    [Pg.2186]    [Pg.302]    [Pg.93]    [Pg.88]    [Pg.39]    [Pg.202]    [Pg.368]    [Pg.212]    [Pg.312]    [Pg.50]    [Pg.1335]    [Pg.1]    [Pg.209]    [Pg.81]    [Pg.316]    [Pg.201]    [Pg.448]    [Pg.526]    [Pg.228]    [Pg.369]    [Pg.218]    [Pg.287]    [Pg.67]    [Pg.56]    [Pg.448]    [Pg.1015]    [Pg.10]    [Pg.507]   
See also in sourсe #XX -- [ Pg.147 , Pg.148 , Pg.149 ]




SEARCH



Replacement fluids

Replacement selective

© 2024 chempedia.info