Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Removal of amines

Oxidation of ascorbate (reduction of 02 to H20) Oxidation of primary alcohols to aldehydes in sugars (reduction of 02 to 11202) Removal of amines and diamines Electron-transfer... [Pg.338]

The synthesis of pure metalacycle la from [Ir(COD)Cl]2 and LI requires only amine base and heat, followed by precipitation and removal of amine hydrochloride. However, this complex was typically generated in situ during early studies by the treatment of a combination of [lr(COD)Cl]2 and LI with an amine base, such as uPrNH2, l,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), or l,8-diazabicyclo[5.4.0] undec-7-ene (DBU). If a 1 1 ratio of iridium to ligand is used, a mixture of la and [Ir(COD)Cl]2 is produced. Helmchen et al. have reported that catalyst activation in the presence of tetrahydrothiophene (THT) prevents coordination of the k -phosphoramidite [71]. [Pg.185]

Because the compared protective groups in phenylalanine also differ in their electron acceptor activity, one can expect that anion-radical generation would result in the selective removal of amine protection. This assumption is supported by the ESR studies of some peptide cation-radicals (Lin et al. 1998). For instance, neat histone (a protein from cell nuclei) gives an anion-radical in which the unpaired electron is localized at the amidocarbonyl function. [Pg.383]

DDT p,p -dichloro-diphenyl-trichloroethane. deacetylation removal of acetyl group, dealkylation removal of alkyl group, deaminate removal of amine group, dechlorination removal of chlorine group, de-ethylation removal of ethyl group, dehalogenation removal of halogen atom(s). [Pg.412]

In addition to the need to monitor known problematic compounds, newer compounds are being identified as potential threats to humans and as such need to be monitored in the atmosphere. For example, researchers reported (10) that several chemical and instrumental analyses of HPLC fractions provided evidence for the presence of /V-nitroso compounds in extracts of airborne particles in New York City. The levels of these compounds were found to be approximately equivalent to the total concentrations of polycyclic aromatic hydrocarbons in the air. Since 90% of the N-nitroso compounds that have been tested are carcinogens (10), the newly discovered but untested materials may represent a significant environmental hazard. The procedure involved collecting samples of breathable, particulate matter from the air in New York City. -These samples were extracted with dichloro-methane. Potential interferences were-removed by sequential extractions with 0.2 N NaOH (removal of acids, phenols, nitrates, and nitrites) and 0.2 N H2S04 (removal of amines and bases). The samples were then subjected to a fractional distillation and other treatments. Readers interested in the total details should consult the original article (10). Both thin-layer chromatography (TLC) and HPLC were used to separate the compounds present in the methanolic extract. [Pg.41]

It is extremely advantageous to use for subtraction purposes inorganic compounds that form strong complexes or involatile compounds with particular organic components of the test mixture. An example (see below) is the use of copper(II) salts as reagents for the removal of amines [88]. [Pg.174]

The synthetic procedure is very critical. In our case, we believe that the imido-lithium compound (Li2NR) is present in the solution of butyl lithium and para-toluidine, in diethyl ether, as reported for the dilithiated a-naphtylamine. This is a noticeable difference in comparison to typical preparations of ruthenium, osmium, and iridium imido complexes, " in which a dichlorometal complex and the monolithium salt (LiNHR) in a molar ratio 1 2, appropriate for a ftA-amido precursor, are used. In these cases a subsequent removal of amine, or a dehydro-halogenation step with LiNHR, is required to afford the products and free amine. Equation (1) summarizes our synthetic procedure ... [Pg.477]

Removal of amine protecting groups from bases with NH4OH Qt 50-60 C... [Pg.183]

Attempts made to cross-link the polymer subsequent to the removal of amines as the amine hydrohalide produced in Stage 1 were not successful (Paciorek et ai, 1%0). This indicates that amines are involved in the linkage. [Pg.354]

Sodium and potassium hydroxides. The use of these efficient reagents is generally confined to the drying of amines (soda lime, barium oxide and quicklime may also be employed) potassium hydroxide is somewhat superior to the sodium compound. Much of the water may be first removed by shaking with a concentrated solution of the alkali hydroxide. They react with many organic compounds (e.g., acids, phenols, esters and amides) in the presence of water, and are also soluble in certain organic liquids so that their use as desiccants is very limited... [Pg.142]

Dilute hydrochloric or sulphuric acid finds application in the extraction of basic substances from mixtures or in the removal of basic impurities. The dilute acid converts the base e.g., ammonia, amines, etc.) into a water-soluble salt e.g., ammonium chloride, amine hydrochloride). Thus traces of aniline may be separated from impure acetanilide by shaking with dilute hydrochloric acid the aniline is converted into the soluble salt (aniline hydrochloride) whilst the acetanilide remains unaffected. [Pg.151]

The modified procedure involves refluxing the N-substituted phthaUmide in alcohol with an equivalent quantity of hydrazine hydrate, followed by removal of the alcohol and heating the residue with hydrochloric acid on a steam bath the phthalyl hydtazide produced is filtered off, leaving the amine hydrochloride in solution. The Gabriel synthesis has been employed in the preparation of a wide variety of amino compounds, including aliphatic amines and amino acids it provides an unequivocal synthesis of a pure primary amine. [Pg.560]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

If the crystals are opaque white and do not deliquesce quickly in air of average humidity (65% rh), they may be contaminated with some Hex amine. Washing 100g of the crude product with lOOmL of Chloroform by stirring in a beaker then filtering, repeated as many times as necessary, will remove Hex amine. Methylamine HCI is insoluble in Chloroform whereas Hexamine Is at the rate of 1g to 10mL. [Pg.277]

Amidation. Heating of the diammonium salt or reaction of the dimethyl ester with concentrated ammonium hydroxide gives adipamide [628-94-4] mp 228°C, which is relatively insoluble in cold water. Substituted amides are readily formed when amines are used. The most industrially significant reaction of adipic acid is its reaction with diamines, specifically 1,6-hexanediamine. A water-soluble polymeric salt is formed initially upon mixing solutions of the two materials then hea ting with removal of water produces the polyamide, nylon-6,6. This reaction has been studied extensively, and the hterature contains hundreds of references to it and to polyamide product properties (31). [Pg.240]

Toxic or malodorous pollutants can be removed from industrial gas streams by reaction with hydrogen peroxide (174,175). Many Hquid-phase methods have been patented for the removal of NO gases (138,142,174,176—178), sulfur dioxide, reduced sulfur compounds, amines (154,171,172), and phenols (169). Other effluent treatments include the reduction of biological oxygen demand (BOD) and COD, color, odor (142,179,180), and chlorine concentration. [Pg.481]

Polymerization. The polymerization of aziridines takes place ia the presence of catalytic amounts of acid at elevated temperatures. The molecular weight can be controlled by the monomer—catalyst ratio, the addition of amines as stoppers, or the use of bifimctional initiators. In order to prevent a vigorous reaction, the heat Hberated during the highly exothermic polymerization must be removed by various measures, ie, suitable dilution, controlled metering of the aziridine component, or external cooling after the reaction has started. [Pg.11]

Weak Base. Weak base anion-exchange resins may have primary, secondary, or tertiary amines as the functional group. The tertiary amine -N(CH2)2 is most common. Weak base resins are frequentiy preferred over strong base resins for removal of strong acids in order to take advantage of the greater ease in regeneration. [Pg.372]

The nitro alcohols available in commercial quantities are manufactured by the condensation of nitroparaffins with formaldehyde [50-00-0]. These condensations are equiUbrium reactions, and potential exists for the formation of polymeric materials. Therefore, reaction conditions, eg, reaction time, temperature, mole ratio of the reactants, catalyst level, and catalyst removal, must be carefully controlled in order to obtain the desired nitro alcohol in good yield (6). Paraformaldehyde can be used in place of aqueous formaldehyde. A wide variety of basic catalysts, including amines, quaternary ammonium hydroxides, and inorganic hydroxides and carbonates, can be used. After completion of the reaction, the reaction mixture must be made acidic, either by addition of mineral acid or by removal of base by an ion-exchange resin in order to prevent reversal of the reaction during the isolation of the nitro alcohol (see Ion exchange). [Pg.61]

Propylene oxide has found use in the preparation of polyether polyols from recycled poly(ethylene terephthalate) (264), haUde removal from amine salts via halohydrin formation (265), preparation of flame retardants (266), alkoxylation of amines (267,268), modification of catalysts (269), and preparation of cellulose ethers (270,271). [Pg.143]

Dialkyldimethyl and alkyltrknethyl quaternaries can be prepared direcdy from secondary and primary amines as shown ia equations 7 and 8, respectively. This process, known as exhaustive alkylation, is usually not the method of choice on a commercial scale. This technique requires the continuous addition of basic material over the course of the reaction to prevent the formation of amine salts (223,224). Furthermore, products such as inorganic salt and water must be removed from the quaternary. The salt represents a significant disposal problem. [Pg.381]


See other pages where Removal of amines is mentioned: [Pg.317]    [Pg.152]    [Pg.154]    [Pg.137]    [Pg.837]    [Pg.1359]    [Pg.1390]    [Pg.152]    [Pg.317]    [Pg.152]    [Pg.154]    [Pg.137]    [Pg.837]    [Pg.1359]    [Pg.1390]    [Pg.152]    [Pg.418]    [Pg.418]    [Pg.419]    [Pg.573]    [Pg.66]    [Pg.197]    [Pg.219]    [Pg.393]    [Pg.307]    [Pg.10]    [Pg.125]    [Pg.400]    [Pg.536]    [Pg.200]    [Pg.262]    [Pg.18]    [Pg.39]    [Pg.58]   


SEARCH



© 2024 chempedia.info