Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox Subject

Sample Preservation Without preservation, many solid samples are subject to changes in chemical composition due to the loss of volatile material, biodegradation, and chemical reactivity (particularly redox reactions). Samples stored at reduced temperatures are less prone to biodegradation and the loss of volatile material, but fracturing and phase separations may present problems. The loss of volatile material is minimized by ensuring that the sample completely fills its container without leaving a headspace where gases can collect. Samples collected from materials that have not been exposed to O2 are particularly susceptible to oxidation reactions. For example, the contact of air with anaerobic sediments must be prevented. [Pg.198]

Mechanism of Anthraquinone Acceleration. The mechanism for the dual function of AQ has been the subject of much research (29). Anthraquinone is an effective pulping accelerator in very small quantities and functions as a catalyst in the process. It is generally accepted that AQ functions in a complex redox sequence. [Pg.271]

The effects of concentration, velocity and temperature are complex and it will become evident that these factors can frequently outweigh the thermodynamic and kinetic considerations detailed in Section 1.4. Thus it has been demonstrated in Chapter 1 that an increase in hydrogen ion concentration will raise the redox potential of the aqueous solution with a consequent increase in rate. On the other hand, an increase in the rate of the cathodic process may cause a decrease in rate when the metal shows an active/passive transition. However, in complex environmental situations these considerations do not always apply, particularly when the metals are subjected to certain conditions of high velocity and temperature. [Pg.307]

The early history of redox initiation has been described by Bacon.23 The subject has also been reviewed by Misra and Bajpai,207 Bamford298 and Sarac.2,0 The mechanism of redox initiation is usually bimolecular and involves a single electron transfer as the essential feature of the mechanism that distinguishes it from other initiation processes. Redox initiation systems are in common use when initiation is required at or below ambient temperature and drey are frequently used for initiation of emulsion polymerization. [Pg.104]

A final class of multifunctional initiators is based on the use a (muUi)functional polymer and a low molecular weight redox agent. Radicals on the polymer chain arc generated from the polymer bound functionality by a redox reaction. Ideally, no free initiating species are formed. The best known of this class are the polyol-redox and related systems. Polymers containing hydroxy or glycol and related functionality are subject to one electron oxidation by species such as ceric ions or periodate (Scheme 7.23).266,267 Substrates such as cellulose,... [Pg.386]

The sulfur-rich oxides S 0 and S 02 belong to the group of so-called lower oxides of sulfur named after the low oxidation state of the sulfur atom(s) compared to the best known oxide SO2 in which the sulfur is in the oxidation state +4. Sulfur monoxide SO is also a member of this class but is not subject of this review. The blue-green material of composition S2O3 described in the older literature has long been shown to be a mixture of salts with the cations S4 and Ss and polysulfate anions rather than a sulfur oxide [1,2]. Reliable reviews on the complex chemistry of the lower sulfur oxides have been published before [1, 3-6]. The present review deals with those sulfur oxides which contain at least one sulfur-sulfur bond and not more than two oxygen atoms. These species are important intermediates in a number of redox reactions of elemental sulfur and other sulfur compounds. [Pg.204]

The Rieske protein II (SoxF) from Sulfolobus acidocaldarius, which is part, not of a bci or b f complex, but of the SoxM oxidase complex 18), could be expressed in E. coli, both in a full-length form containing the membrane anchor and in truncated water-soluble forms 111). In contrast to the results reported for the Rieske protein from Rhodobacter sphaeroides, the Rieske cluster was more efficiently inserted into the truncated soluble forms of the protein. Incorporation of the cluster was increased threefold when the E. coli cells were subject to a heat shock (42°C for 30 min) before induction of the expression of the Rieske protein, indicating that chaperonins facilitate the correct folding of the soluble form of SoxF. The iron content of the purified soluble SoxF variant was calculated as 1.5 mol Fe/mol protein the cluster showed g values very close to those observed in the SoxM complex and a redox potential of E° = +375 mV 111). [Pg.146]

The electrochemical behavior of heterometallic clusters has been reviewed clsewbcre."" The interest in examining clusters stems from their potential to act as "electron sinks " in principle, an aggregate of several metal atoms may be capable of multiple redox state changes. The incorporation of heterometals provides the opportunity to tune the electrochemical response, effects which should be maximized in very mixed"-metal clusters. Few very mixed -metal clusters have been subjected to detailed electrochemical studies the majority of reports deal with cyclic voltammetry only. Table XII contains a summary of electrochemical investigations of "very mixed"-metal clusters. [Pg.125]

The last two decades have seen a growing interest in the mechanism of inorganic reactions in solution. Nowhere is this activity more evident than in the topic covered by this review the oxidation-reduction processes of metal complexes. This subject has been reviewed a number of times previously, notably by Taube (1959), Halpern (1961), Sutin (1966), and Sykes (1967). Other articles and books concerned, wholly or partly, with the topic include those by Stranks, Fraser , Strehlow, Reynolds and Lumry , Basolo and Pearson, and Candlin et al ° Important recent articles on the theoretical aspects are those by Marcus and Ruff. Elementary accounts of redox reactions are included in the books by Edwards , Sykes and Benson . The object of the present review is to provide a more detailed survey of the experimental work than has hitherto been available. [Pg.153]

The redox reactions of the actinide elements have been the subject of a recent and authoritative review by Newton and Baker . The net activation process concept is used to interpret the experimental data. Empirical correlations shown to exist include those between the entropies of the activated complexes and their charges, and, for a set of similar reactions, between AG and AG , and and A/f . The present state of the evidence for binuclear species is discussed. [Pg.253]

Similar disproportionation is likely to occur during catalytic hydrocarbon oxidation since the Bl2Mo20g catalyst is subjected to continuous redox cycling under such conditions. Therefore, any kinetic or catalytic information about Bi2Mo20n is suspect unless the absence of surface restructuring can be confirmed. [Pg.29]

In electrocatalysis, the major subject are redox reactions occurring on inert, nonconsumable electrodes and involving substances dissolved in the electrolyte while there is no stoichiometric involvement of the electrode material. Electrocatalytic processes and phenomena are basically studied in aqueous solutions at temperatures not exceeding 120 to 150°C. Yet electrocatalytic problems sometimes emerge as well in high-temperature systems at interfaces with solid or molten electrolytes. [Pg.521]

The biological applications of tetrazolium salts are the subject of a textbook.96 Kuhn and Jerchel74 were the first to recognize the utility of tetrazolium salts as indicators in redox enzyme activity, particularly those of the various dehydrogenases. It has been recognized449 that this particular utility of tetrazolium salts is related to the proximity of their redox potentials to those of the hydride transfer systems in biology450 such as nicotinamide adenine dinucleotide, NAD, and its phosphate analogue, NADP. [Pg.274]

Theoretical calculations have been carried out on a number of zinc-containing enzymatic systems. For example, calculations on the mechanism of the Cu/Zn enzyme show the importance of the full protein environment to get an accurate description of the copper redox process, i.e., including the electronic effects of the zinc ion.989 Transition structures at the active site of carbonic anhydrase have been the subject of ab initio calculations, in particular [ZnOHC02]+, [ZnHC03H20]+, and [Zn(NH3)3HC03]+.990... [Pg.1234]


See other pages where Redox Subject is mentioned: [Pg.606]    [Pg.2409]    [Pg.2972]    [Pg.2991]    [Pg.351]    [Pg.33]    [Pg.433]    [Pg.177]    [Pg.341]    [Pg.716]    [Pg.21]    [Pg.31]    [Pg.442]    [Pg.23]    [Pg.51]    [Pg.352]    [Pg.285]    [Pg.108]    [Pg.253]    [Pg.8]    [Pg.236]    [Pg.293]    [Pg.29]    [Pg.221]    [Pg.253]    [Pg.417]    [Pg.439]    [Pg.45]    [Pg.51]    [Pg.53]    [Pg.296]    [Pg.422]    [Pg.810]    [Pg.112]    [Pg.251]    [Pg.400]    [Pg.115]   
See also in sourсe #XX -- [ Pg.889 ]




SEARCH



Redox stability Subject

SUBJECTS Redox activity

Subject redox behaviour

Subject redox potential

Subject redox reactions

© 2024 chempedia.info