Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity copolymerization

Chain copolymerization is important from several considerations. Much of our knowledge of the reactivities of monomers, free radicals, carbocations, and carbanions in chain polymerization comes from copolymerization studies. The behavior of monomers in copolymerization reactions is especially useful for studying the effect of chemical structure on reactivity. Copolymerization is also very important from the technological viewpoint. It greatly increases the ability of the polymer scientist to tailor-make a polymer product with specifically desired properties. Polymerization of a single monomer is relatively limited as to the number of different products that are possible. The term homopolymerization is often used to distinguish the polymerization of a single monomer from the copolymerization process. [Pg.465]

As was mentioned in Section 4.12.4.1, six-membered TMC is more reactive, copolymerized with five-membered EC, but still... [Pg.290]

To identify catalysts with this type of difference in comonomer reactivity, copolymerizations of ethylene and 1-octene at relatively high fy were performed. Several different families of catalysts were evaluated under these conditions. The resulting... [Pg.708]

Copolymerization involves the reaction of at least two different monomers A and B. In the case of chain copolymerization, the reactivity ratios and are important, aiid rg = / bb BA di re /cy die... [Pg.2516]

We have tacitly assumed that the rate constants depend only on the last unit of the chain. In such a situation, the copolymerization is called a Markov copolymerization of first order. The special case (i), r r- = 1, is a Markov copolymerization of order zero. If reactivity also depends on the penultimate unit of the chain, the polymerization is a Markov copolymerization of second order. [Pg.2516]

Random copolymerization is rather unusual. Sometimes a monomer which does not easily form a homopolymer will readily add to a reactive group at the end of a growing polymer chain. In turn, that monomer tends to make the other monomer much more reactive. [Pg.1007]

In this chapter we deal exclusively with homopolymers. The important case of copolymers formed by the chain mechanism is taken up in the next chapter. The case of copolymerization offers an excellent framework for the comparison of chemical reactivities between different monomer molecules. Accordingly, we defer this topic until Chap. 7, although it is also pertinent to the differences in the homopolymerization reactions of different monomers. [Pg.346]

The parameters rj and T2 are the vehicles by which the nature of the reactants enter the copolymer composition equation. We shall call these radical reactivity ratios, although similarly defined ratios also describe copolymerizations that involve ionic intermediates. There are several important things to note about radical reactivity ratios ... [Pg.431]

The reactivity ratios of a copolymerization system are the fundamental parameters in terms of which the system is described. Since the copolymer composition equation relates the compositions of the product and the feedstock, it is clear that values of r can be evaluated from experimental data in which the corresponding compositions are measured. We shall consider this evaluation procedure in Sec. 7.7, where it will be found that this approach is not as free of ambiguity as might be desired. For now we shall simply assume that we know the desired r values for a system in fact, extensive tabulations of such values exist. An especially convenient source of this information is the Polymer Handbook (Ref. 4). Table 7.1 lists some typical r values at 60°C. [Pg.431]

The tendency toward alternation is not the only pattern in terms of which copolymerization can be discussed. The activities of radicals and monomers may also be examined as a source of insight into copolymer formation. The reactivity of radical 1 copolymerizing with monomer 2 is measured by the rate constant kj2. The absolute value of this constant can be determined from copolymerization data (rj) and studies yielding absolute homopolymerization constants (ku) ... [Pg.437]

Styrene and methyl methacylate have been used as comonomers in many investigations of copolymerization. Use the following listj of ri values for each of these copolymerizing with the monomers listed below to rank the latter with respect to reactivity ... [Pg.497]

Acrylamide copolymerizes with many vinyl comonomers readily. The copolymerization parameters ia the Alfrey-Price scheme are Q = 0.23 and e = 0.54 (74). The effect of temperature on reactivity ratios is small (75). Solvents can produce apparent reactivity ratio differences ia copolymerizations of acrylamide with polar monomers (76). Copolymers obtained from acrylamide and weak acids such as acryUc acid have compositions that are sensitive to polymerization pH. Reactivity ratios for acrylamide and many comonomers can be found ia reference 77. Reactivity ratios of acrylamide with commercially important cationic monomers are given ia Table 3. [Pg.142]

For a growing radical chain that has monomer 1 at its radical end, its rate constant for combination with monomer 1 is designated and with monomer 2, Similady, for a chain with monomer 2 at its growing end, the rate constant for combination with monomer 2 is / 22 with monomer 1, The reactivity ratios may be calculated from Price-Alfrey and e values, which are given in Table 8 for the more important acryUc esters (87). The sequence distributions of numerous acryUc copolymers have been determined experimentally utilizing nmr techniques (88,89). Several review articles discuss copolymerization (84,85). [Pg.166]

The early kinetic models for copolymerization, Mayo s terminal mechanism (41) and Alfrey s penultimate model (42), did not adequately predict the behavior of SAN systems. Copolymerizations in DMF and toluene indicated that both penultimate and antepenultimate effects had to be considered (43,44). The resulting reactivity model is somewhat compHcated, since there are eight reactivity ratios to consider. [Pg.193]

An emulsion model that assumes the locus of reaction to be inside the particles and considers the partition of AN between the aqueous and oil phases has been developed (50). The model predicts copolymerization results very well when bulk reactivity ratios of 0.32 and 0.12 for styrene and acrylonitrile, respectively, ate used. [Pg.193]

Homogeneous GopolymeriZation. Nearly all acryhc fibers are made from acrylonitrile copolymers containing one or more additional monomers that modify the properties of the fiber. Thus copolymerization kinetics is a key technical area in the acryhc fiber industry. When carried out in a homogeneous solution, the copolymerization of acrylonitrile foUows the normal kinetic rate laws of copolymerization. Comprehensive treatments of this general subject have been pubhshed (35—39). The more specific subject of acrylonitrile copolymerization has been reviewed (40). The general subject of the reactivity of polymer radicals has been treated in depth (41). [Pg.278]

An example of a commercial semibatch polymerization process is the early Union Carbide process for Dynel, one of the first flame-retardant modacryhc fibers (23,24). Dynel, a staple fiber that was wet spun from acetone, was introduced in 1951. The polymer is made up of 40% acrylonitrile and 60% vinyl chloride. The reactivity ratios for this monomer pair are 3.7 and 0.074 for acrylonitrile and vinyl chloride in solution at 60°C. Thus acrylonitrile is much more reactive than vinyl chloride in this copolymerization. In addition, vinyl chloride is a strong chain-transfer agent. To make the Dynel composition of 60% vinyl chloride, the monomer composition must be maintained at 82% vinyl chloride. Since acrylonitrile is consumed much more rapidly than vinyl chloride, if no control is exercised over the monomer composition, the acrylonitrile content of the monomer decreases to approximately 1% after only 25% conversion. The low acrylonitrile content of the monomer required for this process introduces yet another problem. That is, with an acrylonitrile weight fraction of only 0.18 in the unreacted monomer mixture, the low concentration of acrylonitrile becomes a rate-limiting reaction step. Therefore, the overall rate of chain growth is low and under normal conditions, with chain transfer and radical recombination, the molecular weight of the polymer is very low. [Pg.279]

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

GopolymeriZation Initiators. The copolymerization of styrene and dienes in hydrocarbon solution with alkyUithium initiators produces a tapered block copolymer stmcture because of the large differences in monomer reactivity ratios for styrene (r < 0.1) and dienes (r > 10) (1,33,34). In order to obtain random copolymers of styrene and dienes, it is necessary to either add small amounts of a Lewis base such as tetrahydrofuran or an alkaU metal alkoxide (MtOR, where Mt = Na, K, Rb, or Cs). In contrast to Lewis bases which promote formation of undesirable vinyl microstmcture in diene polymerizations (57), the addition of small amounts of an alkaU metal alkoxide such as potassium amyloxide ([ROK]/[Li] = 0.08) is sufficient to promote random copolymerization of styrene and diene without producing significant increases in the amount of vinyl microstmcture (58,59). [Pg.239]

Most commercial processes involve copolymerization of ethylene with the acid comonomer followed by partial neutralization, using appropriate metal compounds. The copolymerization step is best carried out in a weU-stirred autoclave with continuous feeds of all ingredients and the free-radical initiator, under substantially constant environment conditions (22—24). Owing to the relatively high reactivity of the acid comonomer, it is desirable to provide rapid end-over-end mixing, and the comonomer content of the feed is much lower than that of the copolymer product. Temperatures of 150—280°C and pressures well in excess of 100 MPa (1000 atm) are maintained. Modifications on the basic process described above have been described (25,26). When specific properties such as increased stiffness are required, nonrandom copolymers may be preferred. An additional comonomer, however, may be introduced to decrease crystallinity (10,27). [Pg.408]

Developments in aliphatic isocyanates include the synthesis of polymeric aliphatic isocyanates and masked or blocked diisocyanates for appflcafions in which volatility or reactivity ate of concern. Polymeric aliphatic isocyanates ate made by copolymerizing methacrylic acid derivatives, such as 2-isocyanatoethyl methacrylate, and styrene [100-42-5] (100). Blocked isocyanates ate prepared via the reaction of the isocyanate with an active hydrogen compound, such as S-caprolactam, phenol [108-95-2] or acetone oxime. [Pg.459]

Fig. 2. Dependence of olefin reactivity on its carbon atom number when linear a-olefins are copolymerized with ethylene. Fig. 2. Dependence of olefin reactivity on its carbon atom number when linear a-olefins are copolymerized with ethylene.
Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

The and e values of the aHyl group in DAP have been estimated as 0.029 and 0.04, respectively, suggesting that DAP acts as a fairly typical unconjugated, bifunctional monomer (42). Cyclization affects copolymerization, since cyclized radicals are less reactive in chain propagation. Thus DAP is less reactive in copolymerization than DAIP or DATP where cyclization is stericaHy hindered. Particular comonomers affect cyclization, chain transfer, and residual unsaturation in the copolymer products. DiaHyl tetrachloro- and tetrabromophthalates are low in reactivity. [Pg.85]

Tables 7 and 8 give properties of some diaHyl esters. DimethaHyl phthalate [5085-00-7] has been copolymerized with vinyl acetate and benzoyl peroxide, and reactivity ratios have been reported (75). Tables 7 and 8 give properties of some diaHyl esters. DimethaHyl phthalate [5085-00-7] has been copolymerized with vinyl acetate and benzoyl peroxide, and reactivity ratios have been reported (75).
Copolymers of diallyl itaconate [2767-99-9] with AJ-vinylpyrrolidinone and styrene have been proposed as oxygen-permeable contact lenses (qv) (77). Reactivity ratios have been studied ia the copolymerization of diallyl tartrate (78). A lens of a high refractive iadex n- = 1.63) and a heat distortion above 280°C has been reported for diallyl 2,6-naphthalene dicarboxylate [51223-57-5] (79). Diallyl chlorendate [3232-62-0] polymerized ia the presence of di-/-butyl peroxide gives a lens with a refractive iadex of n = 1.57 (80). Hardness as high as Rockwell 150 is obtained by polymerization of triaHyl trimeUitate [2694-54-4] initiated by benzoyl peroxide (81). [Pg.87]

In studies of the polymerization kinetics of triaUyl citrate [6299-73-6] the cyclization constant was found to be intermediate between that of diaUyl succinate and DAP (86). Copolymerization reactivity ratios with vinyl monomers have been reported (87). At 60°C with benzoyl peroxide as initiator, triaUyl citrate retards polymerization of styrene, acrylonitrile, vinyl choloride, and vinyl acetate. Properties of polyfunctional aUyl esters are given in Table 7 some of these esters have sharp odors and cause skin irritation. [Pg.87]

Addition of dialkyl fumarates to DAP accelerates polymerization maximum rates are obtained for 1 1 molar feeds (41). Methyl aUyl fumarate [74856-71-6] (MAF), CgH QO, homopolymerizes much faster than methyl aUyl maleate [51304-28-0] (MAM) and gelation occurs at low conversion more cyclization occurs with MAM. The greater reactivity of the fumarate double bond is shown in copolymerization of MAF with styrene in bulk. The maximum rate of copolymerization occurs from monomer ratios, almost 1 1 molar, but no maximum is observed from MAM and styrene. Styrene hinders cyclization of both MAF and MAM. [Pg.87]

This compound is soluble in most organic solvents and may be easily copolymerized with other vinyl monomers to introduce reactive side groups on the polymer chain (18). Such reactive polymer chains may then be used to modify other polymers including other amino resins. It may be desirable to produce the cross-links first. Thus, A/-methylolacrylamide can react with more acrylamide to produce methylenebisacrylamide, a tetrafunctional vinyl monomer. [Pg.323]

Table 5. Free-Radical Copolymerization Reactivity Ratios,... Table 5. Free-Radical Copolymerization Reactivity Ratios,...

See other pages where Reactivity copolymerization is mentioned: [Pg.72]    [Pg.512]    [Pg.1001]    [Pg.72]    [Pg.512]    [Pg.1001]    [Pg.424]    [Pg.134]    [Pg.192]    [Pg.195]    [Pg.357]    [Pg.27]    [Pg.248]    [Pg.397]    [Pg.315]    [Pg.364]    [Pg.80]    [Pg.498]    [Pg.507]    [Pg.516]    [Pg.519]    [Pg.521]    [Pg.429]   
See also in sourсe #XX -- [ Pg.263 ]

See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Acrylonitrile copolymerization reactivity ratios

Alkyllithium, anionic initiators copolymerization reactivity

Cationic copolymerization monomer reactivity ratios

Chain copolymerization monomer reactivity ratio

Copolymerization anionic monomer reactivity ratio

Copolymerization equation monomer reactivity ratio

Copolymerization monomer reactivities

Copolymerization radical reactivities

Copolymerization reactivity ratio significance

Copolymerization reactivity ratios

Copolymerization reactivity ratios for

Copolymerization reactivity ratios from composition

Copolymerization reactivity ratios, homogeneous

Copolymerization relative reactivity ratios

Copolymerization, anionic butadiene-isoprene reactivity

Copolymerization, anionic butadiene-styrene reactivity

Copolymerizations, radical, reactivity

Free radical copolymerization reactivity ratios

Lignin, Copolymerization Reactivity

Living radical copolymerization reactivity ratios

Maleic anhydride copolymerization reactivity ratios

Monomer reactivity ratio anionic chain copolymerization

Monomer reactivity ratio cationic chain copolymerization

Monomer reactivity ratio radical chain copolymerization

Monomer reactivity ratios in copolymerization

Monomer reactivity ratios, free radical copolymerization

Quantitative reactivity studies copolymerization reactions

Reactive process in situ copolymerization method

Reactivity Ratios for Copolymerizations of Ethene with Acrylic Acid Esters

Reactivity groups, anionic copolymerization

Reactivity ratios anionic copolymerization

Reactivity ratios butyllithium copolymerizations

Reactivity ratios in copolymerization

Reactivity ratios, for anionic copolymerization

Reactivity ratios, homogeneous solution copolymerization

Reactivity ratios: radical copolymerization

Vinyl chloride copolymerization reactivity ratios

© 2024 chempedia.info