Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymerization, anionic butadiene-styrene reactivity

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

An alternative rationale for the unusual RLi (hydrocarbon) copolymerization of butadiene and styrene has been presented by O Driscoll and Kuntz (71). Rather than invoking selective solvation, these workers stated that classical copolymerization kinetics is sufficient to explain this copolymerization. They adapted the copolymer-composition equation, originally derived from steady-state assumptions for free-radical copolymerizations, to the anionic copolymerization of butadiene and styrene. Equation (20) describes the relationship between the instantaneous copolymer composition c/[M,]/rf[M2] with the concentrations of the two monomers in the feed, M, and M2, and the reactivity ratios, rt, r2, of the monomers. The rx and r2 values are measures of the preference of the growing chain ends for like or unlike monomers. [Pg.80]

Copolymerization of styrene with diolefins provides further support that monomer coordinates with the cationic site prior to addition. Korotkov (218) showed that in homopolymerizations styrene is more reactive than butadiene, but in copolymerization the butadiene reacted first at its homopolymerization rate and when it was exhausted the styrene reacted at its homopolymerization rate. This interesting result has been duplicated by Kuntz (245) and analogous results have been obtained by Spirin and coworkers (237) for the styrene-isoprene system. Presumably, the diene complexes more strongly than styrene with the lithium and excludes styrene from the site. That the complex occurs at a cationic site, rather than at the anion or the metal-carbon bond, is indicated by the fact that dienes form more stable complexes than styrene with Lewis acids (246). It should be emphasized that selective monomer coordination is not the only factor influencing reactivities in copolymerizations. Of greatest importance are the relative reactivities of the different polymer anions. The more resonance-stabilized anion is more readily formed and is less reactive for polymerizing the co-monomer. [Pg.550]

The possibilities inherent in the anionic copolymerization of butadiene and styrene by means of organolithium initiators, as might have been expected, have led to many new developments. The first of these would naturally be the synthesis of a butadiene-styrene copolymer to match (or improve upon) emulsion-prepared SBR, in view of the superior molecular weight control possible in anionic polymerization. The copolymerization behavior of butadiene (or isoprene) and styrene is shown in Table 2.15 (Ohlinger and Bandermann, 1980 Morton and Huang, 1979 Ells, 1963 Hill et al., 1983 Spirin et al., 1962). As indicated earlier, unlike the free radical type of polymerization, these anionic systems show a marked sensitivity of the reactivity ratios to solvent type (a similar effect is noted for different alkali metal counterions). Thus, in nonpolar solvents, butadiene (or isoprene) is preferentially polymerized initially, to the virtual exclusion of the styrene, while the reverse is true in polar solvents. This has been ascribed (Morton, 1983) to the profound effect of solvation on the structure of the carbon-lithium bond, which becomes much more ionic in such media, as discussed previously. The resulting polymer formed by copolymerization in hydrocarbon media is described as a tapered block copolymer it consists of a block of polybutadiene with little incorporated styrene comonomer followed by a segment with both butadiene and styrene and then a block of polystyrene. The structure is schematically represented below ... [Pg.77]

Electron-withdrawing substituents in anionic polymerizations enhance electron density at the double bonds or stabilize the carbanions by resonance. Anionic copolymerizations in many respects behave similarly to the cationic ones. For some comonomer pairs steric effects give rise to a tendency to altemate. The reactivities of the monomers in copolymerizations and the compositions of the resultant copolymers are subject to solvent polarity and to the effects of the counterions. The two, just as in cationic polymerizations, cannot be considered independently from each other. This, again, is due to the tightness of the ion pairs and to the amount of solvation. Furthermore, only monomers that possess similar polarity can be copolymerized by an anionic mechanism. Thus, for instance, styrene derivatives copolymerize with each other. Styrene, however, is unable to add to a methyl methacrylate anion, though it copolymerizes with butadiene and isoprene. In copolymerizations initiated by w-butyllithium in toluene and in tetrahydrofuran at-78 °C, the following order of reactivity with methyl methacrylate anions was observed. In toluene the order is diphenylmethyl methacrylate > benzyl methacrylate > methyl methacrylate > ethyl methacrylate > a-methylbenzyl methacrylate > isopropyl methacrylate > t-butyl methacrylate > trityl methacrylate > a,a -dimethyl-benzyl methacrylate. In tetrahydrofuran the order changes to trityl methacrylate > benzyl methacrylate > methyl methacrylate > diphenylmethyl methacrylate > ethyl methacrylate > a-methylbenzyl methacrylate > isopropyl methacrylate > a,a -dimethylbenzyl methacrylate > t-butyl methacrylate. [Pg.140]

The alkyllithium-initiated anionic copolymerization of diene and styrene monomers continues to be of interest because one can tailor-make copolymers with a wide range of compositional heterogeneity. Recently, kinetic studies have provided rate constant data to further clarify the factors responsible for the predominant incorporation of the less reactive diene monomer in styrene/diene copol3naerizations carried out in hydrocarbon media.They confirm that the magnitude of the rate constants for butadiene-styrene copolymerizations fall in the order results of several... [Pg.335]

Because of the complicating effects of counterion and solvent associated with anionic polymerization, relatively few reactivity ratios have been determined for anionic systems. Typical reactivity ratios for the anionic copolymerization of styrene and a few other monomers are shown in Table 8.3. Most of the values were determined from the copolymer composition equation [Eq. (7.11) or (7.18)]. A dramatic effect of solvent is seen with styrene-butadiene copolymerization, where a change from the nonpolar hexane to the highly solvating THF reverses the order of reactivity. Again in the case of hydrocarbon solvent, the reaction temperature shows a minimal in uence on reactivity ratios, while in the case of polar solvents, such as THF, the reactivity ratios vary considerably, which has been rationalized by considering the solvation of carbon-lithium bond. Thus as the temperature is increased (from -78°C to 25°C), the extent of solvation by THF is expected to decrease, resulting in more covalent carbon-lithium bond. [Pg.457]

An examination of reported reactivity ratios (Table 6) shows that the behaviour rj > 1, r2 1 or vice versa is a common feature of anionic copolymerization. Only in copolymerizations involving the monomers 1,1-diphenylethylene and stilbene, which cannot homopolymerize, do we find <1, r2 <1 [212—215], and hence the alternating tendency so characteristic of many free radical initiated copolymerizations. Normally one monomer is much more reactive to either type of active centre in the order acrylonitrile > methylmethacrylate > styrene > butadiene > isoprene. This is the order of electron affinities of the monomers as measured polarographically in polar solvents [216, 217]. In other words, the reactivity correlates well with the overall thermodynamic stability of the product. Variations of reactivity ratio occur with different solvents and counter-ions but the gross order is predictable. [Pg.56]

A handicap of Grignard reagents in the field of anionic polymerization is certainly their low reactivity toward nonpolar double bonds. Unlike organolithium compounds, organomagnesium compounds are nornally inert toward monomers sueh as styrene or butadiene. Thus, their scope in the field of anionic block-copolymerization is quite limited. [Pg.685]

Selective solvation has been proved in many cases [233-235]. On the other hand, the behaviour r, 1, Y2 1 is a common feature of anionic copolymerization. One monomer is usually much more reactive to either type of active centre in the order acrylonitrile > methyl methacrylate > styrene > butadiene > isoprene, in agreement with its electron affinity [235]. [Pg.332]

Tapered Block Copolymers. The alkyllithium-initiated copolymerizations of styrene with dienes, especially isoprene and butadiene, have been extensively investigated and illustrate the important aspects of anionic copolymerization. As shown in Table 15, monomer reactivity ratios for dienes copolymerizing with styrene in hydrocarbon solution range from approximately 8 to 17, while the corresponding monomer reactivity ratios for styrene vary from 0.04 to 0.25. Thus, butadiene and isoprene are preferentially incorporated into the copolymer initially. This type of copolymer composition is described as either a tapered block copolymer or a graded block copolymer. The monomer sequence distribution can be described by the structures below ... [Pg.579]

Studies of the copolymerizations of 1,1-diphenylethylene and dienes showed rather different behavior compared with the copolymerizations of styrene and 1,1-diphenylethylene [125, 133-136]. The monomer reactivity ratios for copolymerizations of dienes with DPE are shown in Table 7. When butadiene was copolymerized with 1,1-diphenylethylene in benzene at 40 °C with -butyl-lithium as initiator, the monomer reactivity ratio for butadiene, ri, was 54 this means that the addition of butadiene to the butadienyl anion is 54 times faster than addition of 1,1-diphenylethylene to the butadienyl anion [133]. This unreactivity of poly(butadienyl)lithium towards addition to DPE was also observed in studies of end-capping of poly(butadienyl)lithium with DPE in hydrocarbon solution (see Sect.3.3) [109, 111]. Because of this unfavorable monomer reactivity ratio, few DPE units would be incorporated into the co-... [Pg.99]

The living anionic polymers of protected functional methacrylate monomers herein introduced are very similar in reactivity and stability to those of MMA. Accordingly, these living polymers can initiate the polymerization of MMA, tBMA, and other protected functional methacrylate monomers, resulting in block copolymers with tailored chain structures. Complete aossover block copolymerizations among these methacrylate monomers are possible. Furthermore, living anionic polymers of styrene, a-methylstyrene, isoprene, and 1,3-butadiene initiate the polymerization of protected functional methacrylate monomers to afford well-defined AB diblock copolymers. In order to avoid ester carbonyl attack by the chain-end anions, the living anionic polymers should be end-capped with 1,1-diphenylethylene... [Pg.616]

A further distinguishing feature of ionic copolymerizations is the strong dependence of reactivity ratios upon the nature of the solvent and the counter-ion (and hence the initiator). These effects can be dramatic and can lead to a reversing of the order of relative monomer reactivities (cf. reactivity ratios for anionic copolymerization of styrene with butadiene and isoprene in different solvents). [Pg.129]

Differences in the reactivity of the growing species are more pronounced in anionic polymerization than in free radical polymerization. In particular, alkoxides, thiolates, carboxylates, and so on, generally do not initiate the polymerization of (and do not copolymerize with) vinyl monomers. Even in the latter family, the differences between the reactivity of active centers are such that only a very few of them give statistical copolymers. Among those, the styrene/butadiene system is the best known, being industrially produced (in solution) under the trade name of SBR. [Pg.323]

The reactivity of a combination of monomers depends a great deal on the nature of the polymerizing center. For example, the reactivity ratios of butadiene (1) and styrene (2) are quite different in an anionic copolymerization (r, =5, Tj = 0.04) and in a radical copolymerization [r- = 1.39, Tj = 0.78). If a copolymerization is performed with a 50/50 mixture of the two, what are the initial compositions of the polymers formed in the two cases ... [Pg.159]


See other pages where Copolymerization, anionic butadiene-styrene reactivity is mentioned: [Pg.227]    [Pg.506]    [Pg.498]    [Pg.250]    [Pg.21]    [Pg.530]    [Pg.531]    [Pg.3]    [Pg.186]    [Pg.332]    [Pg.498]    [Pg.58]    [Pg.696]    [Pg.186]    [Pg.498]    [Pg.149]    [Pg.12]    [Pg.1917]   


SEARCH



Butadiene, anionic copolymerization

Copolymerization butadiene-styrene

Copolymerization, butadiene

Reactivity copolymerization

Styrene reactivity

Styrene-butadiene

© 2024 chempedia.info