Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction media alcohols

The main problem with the hydrophilic phosphine-assisted protocol is a need for high loads of catalyst and ligand. Recent results show that this requirement is most likely accounted for by ineffective mass transfer in biphasic media. The addition of surfactants results in a serious increase in catalytic efficiency and allows one to decrease the amount of catalyst to 0.01 mol % without appreciable loss of reaction rate and yield (Scheme 48). Any type of surfactants (cationic, anionic, betains, or nonionic) are equally useful, provided that the amount of surfactant in the system is high. Though the authors of this are silent about the nature of the system formed, the data of the composition of the reaction media (alcohol as cosolvent, molar ratio of surfactant, water, alcohol, and electrolyte are the factors typical for such systems) prompt a conclusion that it is... [Pg.1308]

Hydrogenations with coppcr-chromium oxide catalyst are usually carried out in the liquid phase in stainless steel autoclaves at pressures up to 5000-6000 lb. per square inch. A solvent is not usually necessary for hydrogenation of an ester at 250° since the original ester and the alcohol or glycol produced serve as the reaction medium. However, when dealing with small quantities and also at temperatures below 200° a solvent is desirable this may be methyl alcohol, ethyi alcohol, dioxan or methylcyc/ohexane. [Pg.872]

The slow oxidation of primary alcohols, particularly MeOH, is utilized for the oxidation of allylic or secondary alcohols with allyl methyl carbonate without forming carbonates of the alcohols to be oxidized. Allyl methyl carbonate (564) forms 7r-allylpalladium methoxide, then exchange of the methoxide with a secondary or allylic alcohol 563 present in the reaction medium takes place to form the 7r-allylpalladium alkoxide 565, which undergoes elimination of j3-hydrogen to give the ketone or aldehyde 566. The lactol 567 was oxidized selectively with diallyl carbonate to the lactone 568 without attacking the secondary alcohol in the synthesis of echinosporin[360]. [Pg.366]

But the reaction with aliphatic a-halocarbonyl compounds is usually complex, and a variety of compounds can be formed depending on the reactants and the reaction conditions. With chloroacetone in neutral medium (alcohol) the acyclic intermediate (144) analogous to those obtained with thiourea and thioamides was isolated (Scheme 70). [Pg.249]

According to Le Chatelier s principle, a system at equilibrium adjusts so as to mini mize any stress applied to it When the concentration of water is increased the system responds by consuming water This means that proportionally more alkene is converted to alcohol the position of equilibrium shifts to the right Thus when we wish to pre pare an alcohol from an alkene we employ a reaction medium m which the molar con centration of water is high—dilute sulfuric acid for example... [Pg.249]

Under acidic conditions, furfuryl alcohol polymerizes to black polymers, which eventually become crosslinked and insoluble in the reaction medium. The reaction can be very violent and extreme care must be taken when furfuryl alcohol is mixed with any strong Lewis acid or Brn nstad acid. Copolymer resins are formed with phenoHc compounds, formaldehyde and/or other aldehydes. In dilute aqueous acid, the predominant reaction is a ring opening hydrolysis to form levulinic acid [123-76-2] (52). In acidic alcohoHc media, levulinic esters are formed. The mechanism for this unusual reaction in which the hydroxymethyl group of furfuryl alcohol is converted to the terminal methyl group of levulinic acid has recendy been elucidated (53). [Pg.79]

The reaction rate is increased by using an entraining agent such as hexane, benzene, toluene, or cyclohexane, depending on the reactant alcohol, to remove the water formed. The concentration of water in the reaction medium can be measured, either by means of the Kad-Eischer reagent, or automatically by specific conductance and used as a control of the rate. The specific electrical conductance of acetic acid containing small amounts of water is given in Table 6. [Pg.66]

The in situ process is simpler because it requires less material handling (35) however, this process has been used only for resole resins. When phenol is used, the reaction system is initially one-phase alkylated phenols and bisphenol A present special problems. As the reaction with formaldehyde progresses at 80—100°C, the resin becomes water-insoluble and phase separation takes place. Catalysts such as hexa produce an early phase separation, whereas NaOH-based resins retain water solubiUty to a higher molecular weight. If the reaction medium contains a protective coUoid at phase separation, a resin-in-water dispersion forms. Alternatively, the protective coUoid can be added later in the reaction sequence, in which case the reaction mass may temporarily be a water-in-resin dispersion. The protective coUoid serves to assist particle formation and stabUizes the final particles against coalescence. Some examples of protective coUoids are poly(vinyl alcohol), gum arabic, and hydroxyethjlceUulose. [Pg.298]

The hydroformylation reaction is carried out in the Hquid phase using a metal carbonyl catalyst such as HCo(CO)4 (36), HCo(CO)2[P( -C4H2)] (37), or HRh(CO)2[P(CgH3)2]2 (38,39). The phosphine-substituted rhodium compound is the catalyst of choice for new commercial plants that can operate at 353—383 K and 0.7—2 MPa (7—20 atm) (39). The differences among the catalysts are found in their intrinsic activity, their selectivity to straight-chain product, their abiHty to isomerize the olefin feedstock and hydrogenate the product aldehyde to alcohol, and the ease with which they are separated from the reaction medium (36). [Pg.51]

Amino alcohols can be resolved by a number of pathways including hydrolysis, esterification, and transesterification. For example, hydrolysis of Ai,0-diacet5l-2-amino-l-butanol with PPL followed by recrystallization results in (80a) with 95% ee (108). Hydrolysis of racemic acetates or butyrates of 2-[(aLkoxycarbonyl)amino]-l-aLkanols with PFL gives (R)-alcohol (81) with 95% ee (109). (3)-(81) can be obtained by transesterification of the racemic (81) with ethyl acetate which also serves as the reaction medium (109). [Pg.343]

Dianion formation from 2-methyl-2-propen-l-ol seems to be highly dependent on reaction conditions. Silylation of the dianion generated using a previously reported method was unsuccessful in our hands. The procedure described here for the metalation of the allylic alcohol is a modification of the one reported for formation of the dianion of 3-methyl-3-buten-l-ol The critical variant appears to be the polarity of the reaction medium. In solvents such as ether and hexane, substantial amounts (15-50%) of the vinyl-silane 3 are observed. Very poor yields of the desired product were obtained in dirnethoxyethane and hexamethylphosphoric triamide, presumably because of the decomposition of these solvents under these conditions. Empirically, the optimal solvent seems to be a mixture of ether and tetrahydrofuran in a ratio (v/v) varying from 1.4 to 2.2 in this case 3 becomes a very minor component. [Pg.65]

Many aromatic steroids submitted to the Birch reduction contain hydroxyl groups which are deprotonated to the corresponding alkoxides during the reduction, particularly if a tertiary alcohol is used as the proton donoi. The steroidal alkoxides and the one derived from the proton donor often precipitate and cause foaming of the reaction mixture, as was noted by Wilds and Nelson. These alkoxides can be kept in solution by adding an excess of the proton donor alcohol to the mixture the alcohol also assists in dissolving the starting hydroxylic steroid. A particularly useful reaction medium for hydroxylic steroids contains ammonia, tetrahydrofuran and -butyl alcohol in the volume ratio of 2 1 (Procedure 2, section V). This mixture... [Pg.26]

The prototype of the antihistamines based on benzhydrol, diphenhydramine (3), is familiar to many today under the trade name Benadryl . Light-induced bromination of diphenylmethane affords benzhydryl bromide (2). This is then allowed to react with dimethylaminoethanol to give the desired ether. Although no mechanistic studies have been reported, it is not unlikely that I he bromine undergoes SNi solvolysis in the reaction medium the carbonitjm ion then simply picks up the alcohol. It might be noted in passing that the theophyline salt of 4 is familiar to many Iravelers as a motion sickness remedy under the trade name Oram amine . [Pg.41]

It is not necessary that the intermediate be separated from the reaction medium in the preparation of the end product. Instead, the reaction mixture, after cooling, is treated with 200 ml of water acidified with 42 ml 10% hydrochloric acid solution, and filtered. To the clear, light yellow filtrate is added dropwise a solution of 9.B g (0.07 mol) 5-nltro-2-furaldehyde in 100 ml ethyl alcohol. An orange solution of the hydrochloride results. The free base is precipitated asyellow plates by making the solution basic with saturated sodium carbonate solution. 14 g of the compound is filtered off by suction, washed with alcohol, and dried. The yield, MP 204°C to 205°C (dec.), is 53% of theoretical based on 3-(N-morpholinyl)-1,2-epoxy-propane. Recrystallization from 95% alcohol (75% recovery) raises the melting point to 206°C (dec.). [Pg.707]

Freshly distilled decahydronaphthalene was used. With the more easily reduced halides, and where the boiling point of the neutral reduction product was close to that of decahydronaptha-lene, an excess of 2-propanol was used as the reaction medium. Other hydrocarbons and secondary or tertiary alcohols may be employed for convenience in particular reductions. Diethyl ether and tetrahydrofuran were not found to be generally suitable media. [Pg.104]

We have developed an efficient and practical method for clean oxidation of starch (21-23) resulting in the oxidation of primary alcohol function in Ce position and the cleavage of vicinal diols in C2 and C3 position (Figure 30.2). We used small amounts of cheap iron tetrasulfophthalocyanine catalyst, pure water as reaction medium and H2O2 as clean oxidant to achieve a one-pot conversion of starch resulting in the introduction of aldehyde and carboxyl functions in polymer chains. The iron content... [Pg.266]

Dansyl chloride is the most widely used of the derivatizing reagents. It forms derivatives with primary and secondary amines readily, less rapidly with phenols and imidazoles, and very slowly with alcohols. The reaction medium is usually an aqueous-organic sixture (e.g., 1 1 acetone-water) adjusted to a pH of 9.5-10. Dansyl chloride has two major application areas. It is used to determine small amounts of amines, amino acids and phenols, as... [Pg.953]

Reduction of Ketones and Enones. Although the method has been supplanted for synthetic purposes by hydride donors, the reduction of ketones to alcohols in ammonia or alcohols provides mechanistic insight into dissolving-metal reductions. The outcome of the reaction of ketones with metal reductants is determined by the fate of the initial ketyl radical formed by a single-electron transfer. The radical intermediate, depending on its structure and the reaction medium, may be protonated, disproportionate, or dimerize.209 In hydroxylic solvents such as liquid ammonia or in the presence of an alcohol, the protonation process dominates over dimerization. Net reduction can also occur by a disproportionation process. As is discussed in Section 5.6.3, dimerization can become the dominant process under conditions in which protonation does not occur rapidly. [Pg.435]

A mixture of 1,4-dioxane and water is often used as the solvent for the conversion of aldehydes and ketones by H2Se03 to a-dicarbonyl compounds in one step (Eq. 8.117).331 Dehydrogenation of carbonyl compounds with selenium dioxide generates the a, (i-unsaturated carbonyl compounds in aqueous acetic acid.332 Using water as the reaction medium, ketones can be transformed into a-iodo ketones upon treatment with sodium iodide, hydrogen peroxide, and an acid.333 Interestingly, a-iodo ketones can be also obtained from secondary alcohol through a metal-free tandem oxidation-iodination approach. [Pg.281]


See other pages where Reaction media alcohols is mentioned: [Pg.340]    [Pg.340]    [Pg.340]    [Pg.179]    [Pg.428]    [Pg.25]    [Pg.38]    [Pg.295]    [Pg.434]    [Pg.187]    [Pg.61]    [Pg.64]    [Pg.83]    [Pg.552]    [Pg.12]    [Pg.195]    [Pg.8]    [Pg.255]    [Pg.165]    [Pg.164]    [Pg.367]    [Pg.233]    [Pg.436]    [Pg.236]    [Pg.143]    [Pg.154]    [Pg.155]    [Pg.157]    [Pg.314]    [Pg.111]    [Pg.49]   
See also in sourсe #XX -- [ Pg.99 ]




SEARCH



Media alcohols

Medium, reaction

© 2024 chempedia.info