Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms multistep reactions

Successful applications of the macrocyclic force probes have been demonstrated in the kinetic study of mechanochemical reactions, especially multistep reactions. By incorporating an ester group in the stiff stilbene-based macrocycle, Boulatov and co-workers investigated its alkaline hydrolysis as a functimi of restoring force [110]. It was found that the hydrolysis of ester is insensitive to mechanical force, which is in agreement with MD simulations [112]. This is because the relative... [Pg.11]

Potential Energy Diagrams for Multistep Reactions The SnI Mechanism... [Pg.159]

POTENTIAL ENERGY DIAGRAMS FOR MULTISTEP REACTIONS THE Sn1 mechanism... [Pg.159]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

Not all reactions can be fitted by the Hammett equations or the multiparameter variants. There can be several reasons for this. The most common is that the mechanism of the reaction depends on the nature of the substituent. In a multistep reaction, for example, one step may be rate-determining in the case of electron-withdrawing substituents, but a different step may become rate-limiting when the substituent is electron-releasing. The rate of semicarbazone formation of benzaldehydes, for example, shows a nonlinear Hammett... [Pg.213]

Identification of the intermediates in a multistep reaction is a major objective of studies of reaction mechanisms. When the nature of each intermediate is fairly well understood, a great deal is known about the reaction mechanism. The amount of an intermediate present in a reacting system at any instant of time will depend on the rates of the steps by which it is formed and the rate of its subsequent reaction. A qualitative indication of the relationship between intermediate concentration and the kinetics of the reaction can be gained by considering a simple two-step reaction mechanism ... [Pg.226]

In Chapter 1 we distinguished between elementary (one-step) and complex (multistep reactions). The set of elementary reactions constituting a proposed mechanism is called a kinetic scheme. Chapter 2 treated differential rate equations of the form V = IccaCb -., which we called simple rate equations. Chapter 3 deals with many examples of complicated rate equations, namely, those that are not simple. Note that this distinction is being made on the basis of the form of the differential rate equation. [Pg.59]

These are the coefficients that determine the Tafel slope of the log / against q curve of a multistep reaction, and they are of fundamental importance in providing information on the mechanism of the reaction. Equations 20.86 and 20.87 are of the same form as equations 20.59 and 20.58 that were derived for a simple one-step reaction involving a symmetrical energy barrier, and under these circumstances equations 20.90 and 20.91 simplify to... [Pg.1208]

As a final example of numerical simulations, consider the base-catalyzed decomposition of ozone in aqueous solution. This multistep reaction is controversial in that contradictory mechanisms have been suggested.33 34 The set of reactions that appears to be the most consistent with the experimental data is shown in Table 5-1, with a set of rate constants. Most of these values were reported in the literature, but several were refined to give agreement with experiments that measured the decline in concentration O3. [Pg.117]

Lefebvre, M. C. Establishing the Link Between Multistep Electrochemical Reaction Mechanisms and Experimental Tafel Slopes 32... [Pg.605]

The mechanism of carbon dioxide reduction in aqueous and nonaqueous solutions was investigated by several authors. It is now generally accepted that the reduction of carbon dioxide to formate ions is a multistep reaction with the intermediate formation of free radicals CO2 and HCO2 either in the solution or adsorbed on the electrode ... [Pg.294]

The mechanism of the POCL reaction is a complex multistep process and it has proved to be difficult to elucidate. Side reactions as well as light-generating reactions are fast and overlapping in time, and many of the intermediates are unstable. Because of this complexity, the complete reaction mechanism has still not been fully resolved, despite numerous investigations since its discovery. [Pg.146]

Electronically excited S02 has been found to be the principal emitter in the multistep reactions of a number of reduced sulfur compounds such as H2S, CH3SH, (CH3)2S, CS2, and thiophene with ozone [25, 27, 33, 34], Unfortunately, the mechanisms of these complex reactions are not understood. [Pg.357]

Labelling experiments provided the evidence that the Fe1- and Co1-mediated losses of H2 and 2H2 from tetralin are extremely specific. Both reactions follow a clear syn- 1,2-elimination involving C(i)/C(2) and C(3)/C(4), respectively. In the course of the multistep reaction the metal ions do not move from one side of the rr-surface to the other. The kinetic isotope effect associated with the loss of the first H2 molecule, k( 2)/k(Y)2) = 3.4 0.2, is larger than the KIE, WFLj/ATHD) = 1.5 0.2, for the elimination of the second H2 molecule. A mechanism of interaction of the metal ion with the hydrocarbon n-surface, ending with arene-M+ complex 246 formation in the final step of the reaction, outlined in equation 100, has been proposed241 to rationalize the tandem MS studies of the unimolecular single and double dehydrogenation by Fe+ and Co+ complexes of tetraline and its isotopomers 247-251. [Pg.860]

Metal oxides possess multiple functional properties, such as acid-base, redox, electron transfer and transport, chemisorption by a and 71-bonding of hydrocarbons, O-insertion and H-abstract, etc. which make them very suitable in heterogeneous catalysis, particularly in allowing multistep transformations of hydrocarbons1-8 and other catalytic applications (NO, conversion, for example9,10). They are also widely used as supports for other active components (metal particles or other metal oxides), but it is known that they do not act often as a simple supports. Rather, they participate as co-catalysts in the reaction mechanism (in bifunctional catalysts, for example).11,12... [Pg.365]

Homogeneous catalysis is an area of chemistry where computational modeling can have a substantial impact [6-9], Reaction cycles are usually multistep complicated processes, and difficult to characterize experimentally [10-12], An efficient catalytic process should proceed fastly and smoothly and, precisely because of this, the involved intermediates are difficult to characterize, when possible at all. Computational chemistry can be the only way to access to a detailed knowledge of the reaction mechanism, which can be a fundamental piece of information in the optimization and design of new processes and catalysts. [Pg.3]

As a starting point for an examination of the mechanisms of gas phase reactions, the Claisen condensation is a multistep reaction that appears to proceed by essentially the same mechanism in the gas phase as in solution, as illustrated in Figure 5. In the gas phase, in cases where this reaction occurs, all that is observed is a disappearance of the enolate reactant and the appearance of P-carbonyl enolate product. The intermediate ions in the mechanism react too rapidly to exist long enough for detection. In the ICR spectrometer, unless an ion exists for at least a millisecond or longer, there are not enough cyclotron cycles to create a detectable signal. Intermediates such as the ones postulated for this reaction, with 10-50... [Pg.202]

The Boltzmann distribution helps us understand how intermediates can become trapped in energy wells between successive transition states in a multistep reaction mechanism. This behavior forms the basis for a special field of enzymology known as cryoenzymology. By appropriate choice of water-miscible solvents, enzymes can be studied at ultra-low temperatures where the rates of interconversion of enzyme species can be greatly retarded. See Cryoenzymology... [Pg.95]

As-described compounds have also been proposed to be formed as intermediates in the gas phase in the traditional two-component MOCVD process (pre-reactions). For instance, the deposition of AlN from AlMe3 and NH3 [11] most likely proceeds through a multistep-reaction mechanism including both the adduct Me3Al-NH3 and the heterocycle [Me2AlNH2]3, that is formed after elimination of one equivalent of methane, as more or less stable reaction intermediates. This is supported by the fact that both compounds have been successfully used for the deposition of AIN in the absence of any additional NH3 [12]. The same was found for the deposition of InP from InMe3 and PH3 [13]. [Pg.103]

Rate determining step (cont.) electrocatalysis and, 1276 methanol oxidation, 1270 in multistep reactions, 1180 overpotential and, 1175 places where it can occur, 1260 pseudo-equilibrium, 1260 quasi equilibrium and, 1176 reaction mechanism and, 1260 steady state and, 1176 surface chemical reactions and, 1261 Real impedance, 1128, 1135 Reciprocal relation, the, 1250 Recombination reaction, 1168 Receiver states, 1494 Reddy, 1163... [Pg.48]

These are the coefficients that determine the slope of the log i versus T curve (i.e., the Tafel slope of a multistep reaction) and are of primary importance in mechanism determinations. [Pg.469]

MECHANISM FIGURE 22-18 Tryptophan synthase reaction. This enzyme catalyzes a multistep reaction with several types of chemical rearrangements. An aldol cleavage produces indole and glyceraldehyde 3-phosphate this reaction does not require PLP. Dehydration of serine forms a PLP-aminoacrylate intermediate. In steps and this condenses with indole, and the product is hydrolyzed to release tryptophan. These PLP-facilitated transformations occur at the /3 carbon (C-3) of the amino acid, as opposed to the a-carbon reactions described in Figure 18-6. The /3 carbon of serine is attached to the indole ring system. Tryptophan Synthase Mechanism... [Pg.850]

Dual-function catalysts possessing both metallic and acidic sites bring about more complex transformations. Carbocationic cyclization and isomerization as well as reactions characteristic of metals occurring in parallel or in subsequent steps offer new reaction pathways. Alternative reactions may result in the formation of the same products in various multistep pathways. Mechanical mixtures of acidic supports (silica-alumina) and platinum gave results similar to those of platinum supported on acidic alumina.214,215 This indicates that proximity of the active sites is not a requirement for bifunctional catalysis, that is, that the two different functions seem to operate independently. [Pg.54]

In 1961 Heck and Breslow presented a multistep reaction pathway to interpret basic observations in the cobalt-catalyzed hydroformylation.28 Later modifications and refinements aimed at including alternative routes and interpreting side reactions.6 Although not all the fine details of hydroformylation are equally well understood, the Heck-Breslow mechanism is still the generally accepted basic mechanism of hydroformylation.6,17,19,29 Whereas differences in mechanisms using different metal catalysts do exist,30 all basic steps are essentially the same in the phosphine-modified cobalt- and rhodium-catalyzed transformations as well. [Pg.372]

Also, in complex electrode reactions involving multistep proton and electron transfer steps, the electrochemical reaction order with respect to the H+ or HO may also vary with pH, indicating a change of mechanism with pH. In this respect, the use of schemes of squares outlined in Sect. 2.2 is very useful in the analysis of these complex kinetics [13]. [Pg.32]


See other pages where Reaction mechanisms multistep reactions is mentioned: [Pg.424]    [Pg.4]    [Pg.97]    [Pg.123]    [Pg.219]    [Pg.14]    [Pg.93]    [Pg.311]    [Pg.66]    [Pg.207]    [Pg.98]    [Pg.172]    [Pg.128]    [Pg.30]    [Pg.381]    [Pg.537]    [Pg.50]    [Pg.47]    [Pg.1238]    [Pg.209]   
See also in sourсe #XX -- [ Pg.950 , Pg.950 ]




SEARCH



Multistep

Multistep reactions

Potential Energy Diagrams for Multistep Reactions The SN1 Mechanism

Reaction mechanism multistep electron transfers

Reaction mechanisms multistep

© 2024 chempedia.info