Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raney process

Raney nickel, named for its inventor, Murray Raney, is widely used in the industry, chiefly because it is inexpensive and exhibits a wide range of catalytic activities. Essentially, it is prepared by an NaOH leaching of A1 from a 50-50 alloy of Ni and Al. Various standard forms of Raney nickel are used, and discussions of these are readily available 6,7 Tablel.l lists some essentials of the preparation.8 The Raney process is used to prepare several other metal catalysts. 7,9,1°... [Pg.4]

Figure4.8 The Raney process, in which a metal/aluminum alloy is prepared by fusion, and subsequently the aluminum is dissolved by aqueous NaOH, leaving a metallic sponge. ... Figure4.8 The Raney process, in which a metal/aluminum alloy is prepared by fusion, and subsequently the aluminum is dissolved by aqueous NaOH, leaving a metallic sponge. ...
Gas diffusion electrode — (also gas fed electrode) Electrode employed in fuel cells, - electrolysers, and - sensors. The electrode is a porous body prepared in various ways from a variety of materials [i]. Hydrophilic electrodes are mostly made from metals (e.g., nickel). The material is finely dispersed (e.g., by the Raney process) and manufactured into a sheet or plate. Depending on the wetting properties and the pore size, large pores will be wetted and subsequently filled by the electrolyte solution (or molten electrolyte salt), fine pores are not filled... [Pg.292]

Literature references for the preparation of active metals by the Raney process. [Pg.1628]

Mitsui Toatsu Chemical, Inc. disclosed a similar process usiag Raney copper (74) shortiy after the discovery at Dow, and BASF came out with a variation of the copper catalyst ia 1974 (75). Siace 1971 several hundred patents have shown modifications and improvements to this technology, both homogeneous and heterogeneous, and reviews of these processes have been pubHshed (76). Nalco Chemical Company has patented a process based essentially on Raney copper catalyst (77) ia both slurry and fixed-bed reactors and produces acrylamide monomer mainly for internal uses. Other producers ia Europe, besides Dow and American Cyanamid, iaclude AUied CoUoids and Stockhausen, who are beheved to use processes similar to the Raney copper technology of Mitsui Toatsu, and all have captive uses. Acrylamide is also produced ia large quantities ia Japan. Mitsui Toatsu and Mitsubishi are the largest producers, and both are beheved to use Raney copper catalysts ia a fixed bed reactor and to sell iato the merchant market. [Pg.135]

Reduction. Hydrogenation of dimethyl adipate over Raney-promoted copper chromite at 200°C and 10 MPa produces 1,6-hexanediol [629-11-8], an important chemical intermediate (32). Promoted cobalt catalysts (33) and nickel catalysts (34) are examples of other patented processes for this reaction. An eadier process, which is no longer in use, for the manufacture of the 1,6-hexanediamine from adipic acid involved hydrogenation of the acid (as its ester) to the diol, followed by ammonolysis to the diamine (35). [Pg.240]

Catalytic methanation processes include (/) fixed or fluidized catalyst-bed reactors where temperature rise is controlled by heat exchange or by direct cooling using product gas recycle (2) through wall-cooled reactor where temperature is controlled by heat removal through the walls of catalyst-filled tubes (J) tube-wall reactors where a nickel—aluminum alloy is flame-sprayed and treated to form a Raney-nickel catalyst bonded to the reactor tube heat-exchange surface and (4) slurry or Hquid-phase (oil) methanation. [Pg.70]

H-acid, l-hydroxy-3,6,8-ttisulfonic acid, which is one of the most important letter acids, is prepared as naphthalene is sulfonated with sulfuric acid to ttisulfonic acid. The product is then nitrated and neutralized with lime to produce the calcium salt of l-nitronaphthalene-3,6,8-ttisulfonic acid, which is then reduced to T-acid (Koch acid) with Fe and HCl modem processes use continuous catalytical hydrogenation with Ni catalyst. Hydrogenation has been performed in aqueous medium in the presence of Raney nickel or Raney Ni—Fe catalyst with a low catalyst consumption and better yield (51). Fusion of the T-acid with sodium hydroxide and neutralization with sulfuric acid yields H-acid. Azo dyes such as Direct Blue 15 [2429-74-5] (17) and Acid... [Pg.494]

The alkylation of pyridine [110-86-1] takes place through nucleophiUc or homolytic substitution because the TT-electron-deficient pyridine nucleus does not allow electrophiUc substitution, eg, Friedel-Crafts alkylation. NucleophiUc substitution, which occurs with alkah or alkaline metal compounds, and free-radical processes are not attractive for commercial appHcations. Commercially, catalytic alkylation processes via homolytic substitution of pyridine rings are important. The catalysts effective for this reaction include boron phosphate, alumina, siHca—alurnina, and Raney nickel (122). [Pg.54]

A process based on a nickel catalyst, either supported or Raney type, is described ia Olin Mathieson patents (26,27). The reduction is carried out ia a continuous stirred tank reactor with a concentric filter element built iato the reactor so that the catalyst remains ia the reaction 2one. Methanol is used as a solvent. Reaction conditions are 2.4—3.5 MPa (350—500 psi), 120—140°C. Keeping the catalyst iaside the reactor iacreases catalyst lifetime by maintaining a hydrogen atmosphere on its surface at all times and minimises handling losses. Periodic cleaning of the filter element is required. [Pg.238]

Succinic anhydride is manufactured by catalytic hydrogenation of maleic anhydride [108-31-6]. In the most widely used commercial process this reaction is performed in the Hquid phase, at temperatures of 120—180°C and at moderate pressures, in the range of 500—4000 kPa (72—580 psi). Catalysts mentioned in the patent Hterature include nickel (124), Raney nickel (125,126), palladium on different carriers (127,128), and palladium complexes (129). The hydrogenation of the double bond is exothermic Ai/ = —133.89 kJ/mol (—32 kcal/mol) (130). [Pg.537]

Lubrication AND lubricants). Optimal results are obtained at 130 5°C at a pressure of 1.5—2.0 MPa (15—20 bars) using 0.2 wt % nickel catalyst. Other catalysts and processing parameters may be used to produce unique derivatives. Simple double-bond hydrogenation at 140°C in the presence of Raney nickel catalyst produces glyceryl tris(12-hydroxystearate) [139-44-6], having a melting point of 86°C (46,47). [Pg.154]

The preparation of methyl 12-ketostearate from methyl ricinoleate has been accompHshed using copper chromite catalyst. The ketostearate can also be prepared from methyl ricinoleate in a two-step process using Raney nickel. The first step is a rapid hydrogenation to methyl 12-hydroxystearate, the hydrogen coming from the catalyst, followed by a slower dehydrogenation to product (50,51). [Pg.154]

Ethylamines. Mono-, di-, and triethylamines, produced by catalytic reaction of ethanol with ammonia (330), are a significant outlet for ethanol. The vapor-phase continuous process takes place at 1.38 MPa (13.6 atm) and 150—220°C over a nickel catalyst supported on alumina, siUca, or sihca—alumina. In this reductive amination under a hydrogen atmosphere, the ratio of the mono-, di-, and triethylamine product can be controlled by recycling the unwanted products. Other catalysts used include phosphoric acid and derivatives, copper and iron chlorides, sulfates, and oxides in the presence of acids or alkaline salts (331). Piperidine can be ethylated with ethanol in the presence of Raney nickel catalyst at 200°C and 10.3 MPa (102 atm), to give W-ethylpiperidine [766-09-6] (332). [Pg.415]

The Gassman indole synthesis involves an one-pot process in which hypohalite, a P-carbonyl sulfide derivative 2, and a base are added sequentially to an aniline or a substituted aniline 1 to provide 3-thioalkoxyindoles 3. Raney nickel-mediated desulfurization of 3 then produces the parent indole... [Pg.128]

In 1974, Gassman et al. reported a general method for the synthesis of indoles. For example, aniline 5 was reacted sequentially with r-BuOCl, methylthio-2-propanone 6 and triethylamine to yield methylthioindole 7 in 69% yield. The Raney-nickel mediated desulfurization of 7 then provided 2-methylindole 8 in 79% yield. The scope and mechanism of the process were discussed in the same report by Gassman and coworkers as well. [Pg.128]

Several products other than 2,2 -biaryls have been isolated following reaction of pyridines with metal catalysts. From the reaction of a-picoline with nickel-alumina, Willink and Wibaut isolated three dimethylbipyridines in addition to the 6,6 -dimethyl-2,2 -bipyridine but their structures have not been elucidated. From the reaction of quinaldine with palladium-on-carbon, Rapoport and his co-workers " obtained a by-product which they regarded as l,2-di(2-quinolyl)-ethane. From the reactions of pyridines and quinolines with degassed Raney nickel several different types of by-product have been identified. The structures and modes of formation of these compounds are of interest as they lead to a better insight into the processes occurring when pyridines interact with metal catalysts. [Pg.197]


See other pages where Raney process is mentioned: [Pg.8]    [Pg.279]    [Pg.8]    [Pg.279]    [Pg.871]    [Pg.24]    [Pg.840]    [Pg.443]    [Pg.407]    [Pg.475]    [Pg.14]    [Pg.232]    [Pg.220]    [Pg.238]    [Pg.259]    [Pg.260]    [Pg.36]    [Pg.119]    [Pg.277]    [Pg.86]    [Pg.93]    [Pg.2094]    [Pg.48]    [Pg.304]    [Pg.480]    [Pg.43]    [Pg.634]    [Pg.315]    [Pg.190]    [Pg.200]    [Pg.202]    [Pg.202]    [Pg.68]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Raney

© 2024 chempedia.info