Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum-classical Liouville approach

I. Horenko, C. Salzmann, B. Schmidt, and C. Schutte. Quantum-classical liouville approach to molecular dynamics Surface hopping gaussian phase-space packets. J. Chem. Phys., 117(24) 11075, 2002. [Pg.435]

Abstract. In this chapter we discuss approaches to solving quantum dynamics in the condensed phase based on the quantum-classical Liouville method. Several representations of the quantum-classical Liouville equation (QCLE) of motion have been investigated and subsequently simulated. We discuss the benefits and limitations of these approaches. By making further approximations to the QCLE, we show that standard approaches to this problem, i.e., mean-field and surface-hopping methods, can be derived. The computation of transport coefficients, such as chemical rate constants, represent an important class of problems where the QCL method is applicable. We present a general quantum-classical expression for a time-dependent transport coefficient which incorporates the full system s initial quantum equilibrium structure. As an example of the formalism, the computation of a reaction rate coefficient for a simple reactive model is presented. These results are compared to illuminate the similarities and differences between various approaches discussed in this chapter. [Pg.383]

We have presented some of the most recent developments in the computation and modeling of quantum phenomena in condensed phased systems in terms of the quantum-classical Liouville equation. In this approach we consider situations where the dynamics of the environment can be treated as if it were almost classical. This description introduces certain non-classical features into the dynamics, such as classical evolution on the mean of two adiabatic surfaces. Decoherence is naturally incorporated into the description of the dynamics. Although the theory involves several levels of approximation, QCL dynamics performs extremely well when compared to exact quantum calculations for some important benchmark tests such as the spin-boson system. Consequently, QCL dynamics is an accurate theory to explore the dynamics of many quantum condensed phase systems. [Pg.408]

The chapter is organized as follows The quantum-classical Liouville dynamics scheme is first outlined and a rigorous surface hopping trajectory algorithm for its implementation is presented. The iterative linearized density matrix propagation approach is then described and an approach for its implementation is presented. In the Model Simulations section the comparable performance of the two methods is documented for the generalized spin-boson model and numerical convergence issues are mentioned. In the Conclusions we review the perspectives of this study. [Pg.417]

We have thus reconstructed the derivation and interpreted the results of Ref [15], The first two terms, i.e., the commutator and the Poisson brackets, are already present in a theory based on the quantum-classical Liouville representation discussed in section 1. The new term, which appears within the Heisenberg group approach, needs to be explained. In the attempt to provide a physical interpretation to this term we have shown, in Ref. [1], that the new equation of motion is purely classical. This will be illustrated in the following section. [Pg.456]

As explained in the Introduction, one needs to distinguish the following kinds of surface hopping (SH) methods (i) Semiclassical theories based on a connection ansatz of the WKB wave function, " (ii) stochastic implementations of a given deterministic multistate differential equation, e.g. the quantum-classical Liouville equation, and (iii) quasiclassical models such as the well-known SH schemes of Tully and others. " In this chapter, we focus on the latter type of SH method, which has turned out to be the most popular approach to describe nonadiabatic dynamics at conical intersections. [Pg.642]

At present the practical applicability of the quantum-classical Liouville description and the semiclassical version of the mapping approach is limited because of the dynamical sign problem. As both methods have been proposed only in the last few years, however, they still hold a great potential for improvement. Finally it is noted that all methods considered in this review can in principle be interfaced with an on-the fly ah initio... [Pg.689]

Where T is the initial phase point of the system, L is the Liouville operator, y(tf)(F) is the canonical distribution function, and Bk(T) and k(T) are the values of the classical properties Bk and iLk when the system is in the classical state T. Much work has been done to determine how the quantum-mechanical functions approach the corresponding classical functions. [Pg.27]

The clearest results have been obtained for classical relaxation in bound systems where the full machinery of classical ergodic theory may be utilized. These concepts have been carried over empirically to molecular scattering and decay, where the phase space is not compact and hence the ergodic theory is not directly applicable. This classical approach is the subject of Section II. Less complete information is available on the classical-quantum correspondence, which underlies step 4. This is discussed in Section III where we introduce the Liouville approach to correspondence, which, we believe, provides a unified basis for future studies in this area. Finally, the quantum picture is beginning to emerge, and Section IV summarizes a number of recent approaches relevant for a quantum-mechanical understanding of relaxation phenomena and statistical behavior in bound systems and scattering. [Pg.368]

In this section we advocate a far more advantageous route to studying conceptual features of the classical-quantum correspondence, and indeed for each mechanics independently, in which phase space distributions are used in both classical and quantum mechanics, that is, classical Liouville dynamics50 in the former and the Wigner-Weyl representation in the latter. This approach provides, as will be demonstrated, powerful conceptual insights into the relationship between classical and quantum mechanics. The essential point of this section is easily stated using similar mathematics in both quantum and classical mechanics results in a similar qualitative picture of the dynamics. [Pg.401]

The density operator is the key quantity in quantum statistical physics and as the approach from the quantum world to the classical domain can conveniently be formulated by the Liouville equation... [Pg.128]

It is interesting to note that the Gottingen school, who later developed matrix mechanics, followed the mathematical route, while Schrodinger linked his wave mechanics to a physical picture. Despite their mathematical equivalence as Sturm-Liouville problems, the two approaches have never been reconciled. It will be argued that Schrodinger s physical model had no room for classical particles, as later assumed in the Copenhagen interpretation of quantum mechanics. Rather than contemplate the wave alternative the Copenhagen orthodoxy preferred to disperse their point particles in a probability density and to dress up their interpretation with the uncertainty principle and a quantum measurement problem to avoid any wave structure. [Pg.327]

The crisis of the GME method is closely related to the crisis in the density matrix approach to wave-function collapse. We shall see that in the Poisson case the processes making the statistical density matrix become diagonal in the basis set of the measured variable and can be safely interpreted as generators of wave function collapse, thereby justifying the widely accepted conviction that quantum mechanics does not need either correction or generalization. In the non-Poisson case, this equivalence is lost, and, while the CTRW perspective yields correct results, no theoretical tool, based on density, exists yet to make the time evolution of a contracted Liouville equation, classical or quantum, reproduce them. [Pg.359]

Let us make a final comment, concerning the violation of the Green-Kubo relation. There is a close connection between the breakdown of this fundamental prescription of nonequilibrium statistical physics and the breakdown of the agreement between the density and trajectory approach. We have seen that the CTRW theory, which rests on trajectories undergoing abrupt and unpredictable jumps, establishes the pdf time evolution on the basis of v /(f), whereas the density approach to GME, resting on the Liouville equation, either classical or quantum, and on the convenient contraction over the irrelevant degrees of freedom, eventually establishes the pdf time evolution on the basis of a correlation function, the correlation function in the dynamical case... [Pg.406]

Consider now bound-state dynamics from the viewpoint of quantum mechanics. The essential problem associated with chaotic dynamics has previously been alluded to, that is, since the quantum Liouville spectrum is discrete, the dynamics cannot display true chaotic relaxation. A number of proposals have been made as to what constitutes the quantum analogue of classical chaos.63 We now focus on an approach we have recently been developing and discuss its link to statistical behavior in reaction dynamics. [Pg.416]

Kramers and Heisenberg [2], who predicted the phenomenon of Raman scattering several years before Raman discovered it experimentally, advanced a semiclas-sical theory in which they treated the scattering molecule quantum mechanically and the radiation field classically. Dirac [3] soon extended the theory to include quantization of the radiatiOTi field, and Placzec, Albrecht and others explored the selection rules for molecules with various symmetries [4, 5]. A theory of the resonance Raman effect based on vibratiOTial wavepackets was developed by Heller, Mathies, Meyers and their colleagues [6-11]. Mukamel [1, 12] presented a comprehensive theory that considered the nonlinear response functions for pathways in LiouvUle space. Having briefly described the pertinent pathways in Liouville space above, we will first develop the Kramers-Heisenberg-Dirac theory by a second-order perturbation approach, and then turn to the wavepacket picture. [Pg.517]

The conceptual framework for the - semiclassical simulation of ultrafast spectroscopic observables is provided by the Wigner representation of quantum mechanics [2, 3]. Specifically, for the ultrafast pump-probe spectroscopy using classical trajectories, methods based on the semiclassical limit of the Liouville-von Neumann equation for the time evolution of the vibronic density matrix have been developed [4-8]. Our approach [4,6-8] is related to the Liouville space theory of nonlinear spectroscopy developed by Mukamel et al. [9]. It is characterized by the ability to approximately describe quantum phenomena such as optical transitions by averaging over the ensemble of classical trajectories. Moreover, quantum corrections for the nuclear dynamics can be introduced in a systematic manner, e.g. in the framework of the entangled trajectory method [10,11]. Alternatively, these effects can be also accounted for in the framework of the multiple spawning method [12]. In general, trajectory-based methods require drastically less computational effort than full quantum mechanical calculations and provide physical insight in ultrafast processes. Additionally, they can be combined directly with quantum chemistry methods for the electronic structure calculations. [Pg.300]

Dual Lanczos transformation theory is a projection operator approach to nonequilibrium processes that was developed by the author to handle very general spectral and temporal problems. Unlike Mori s memory function formalism, dual Lanczos transformation theory does not impose symmetry restrictions on the Liouville operator and thus applies to both reversible and irreversible systems. Moreover, it can be used to determine the time evolution of equilibrium autocorrelation functions and crosscorrelation functions (time correlation functions not describing self-correlations) and their spectral transforms for both classical and quantum systems. In addition, dual Lanczos transformation theory provides a number of tools for determining the temporal evolution of the averages of dynamical variables. Several years ago, it was demonstrated that the projection operator theories of Mori and Zwanzig represent special limiting cases of dual Lanczos transformation theory. [Pg.286]


See other pages where Quantum-classical Liouville approach is mentioned: [Pg.246]    [Pg.246]    [Pg.364]    [Pg.364]    [Pg.366]    [Pg.384]    [Pg.415]    [Pg.416]    [Pg.422]    [Pg.622]    [Pg.622]    [Pg.625]    [Pg.687]    [Pg.687]    [Pg.689]    [Pg.254]    [Pg.466]    [Pg.388]    [Pg.129]    [Pg.580]    [Pg.217]    [Pg.411]    [Pg.416]    [Pg.163]    [Pg.28]    [Pg.67]    [Pg.121]    [Pg.40]    [Pg.225]    [Pg.400]    [Pg.16]   
See also in sourсe #XX -- [ Pg.416 , Pg.418 ]




SEARCH



Quantum Approach

Quantum-classical Liouville

© 2024 chempedia.info