Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liouville quantum

For a coupled spin system, the matrix of the Liouvillian must be calculated in the basis set for the spin system. Usually this is a simple product basis, often called product operators, since the vectors in Liouville space are spm operators. The matrix elements can be calculated in various ways. The Liouvillian is the conmuitator with the Hamiltonian, so matrix elements can be calculated from the commutation rules of spin operators. Alternatively, the angular momentum properties of Liouville space can be used. In either case, the chemical shift temis are easily calculated, but the coupling temis (since they are products of operators) are more complex. In section B2.4.2.7. the Liouville matrix for the single-quantum transitions for an AB spin system is presented. [Pg.2099]

As with the uncoupled case, one solution involves diagonalizing the Liouville matrix, iL+R+K. If U is the matrix with the eigenvectors as cohmms, and A is the diagonal matrix with the eigenvalues down the diagonal, then (B2.4.32) can be written as (B2.4.33). This is similar to other eigenvalue problems in quantum mechanics, such as the transfonnation to nonnal co-ordinates in vibrational spectroscopy. [Pg.2100]

Fane U 1964 Liouville representation of quantum mechanics with application to relaxation processes Lectures on the Many Body Problem /o 2, ed E R Caianiello (New York Academic) pp 217-39... [Pg.2112]

Quantum statistical mechanics with the concepts of mixed states, density operators and the Liouville equation. [Pg.29]

A formulation of electronic rearrangement in quantum molecular dynamics has been based on the Liouville-von Neumann equation for the density matrix. Introducing an eikonal representation, it naturally leads to a general treatment where Hamiltonian equations for nuclear motions are coupled to the electronic density matrix equations, in a formally exact theory. Expectation values of molecular operators can be obtained from integrations over initial conditions. [Pg.335]

Our analysis is based on solution of the quantum Liouville equation in occupation space. We use a combination of time-dependent and time-independent analytical approaches to gain qualitative insight into the effect of a dissipative environment on the information content of 8(E), complemented by numerical solution to go beyond the range of validity of the analytical theory. Most of the results of Section VC1 are based on a perturbative analytical approach formulated in the energy domain. Section VC2 utilizes a combination of analytical perturbative and numerical nonperturbative time-domain methods, based on propagation of the system density matrix. Details of our formalism are provided in Refs. 47 and 48 and are not reproduced here. [Pg.178]

Equation (37) is the quantum statistical analogue of Liouville s equation. To find the quantum analogue of the classical principle of conservation of phase density the solution to (37) is written in the form... [Pg.463]

In a molecular-orbital-type (Hartree-Fock or Kohn-Sham density-functional) treatment of a three-dimensional atomic system, the field-free eigenfunctions ir e can be rigorously separated into radial (r) and angular (9) components, governed by respective quantum numbers n and l. In accordance with Sturm-Liouville theory, each increase of n (for... [Pg.715]

Chaos provides an excellent illustration of this dichotomy of worldviews (A. Peres, 1993). Without question, chaos exists, can be experimentally probed, and is well-described by classical mechanics. But the classical picture does not simply translate to the quantum view attempts to find chaos in the Schrodinger equation for the wave function, or, more generally, the quantum Liouville equation for the density matrix, have all failed. This failure is due not only to the linearity of the equations, but also the Hilbert space structure of quantum mechanics which, via the uncertainty principle, forbids the formation of fine-scale structure in phase space, and thus precludes chaos in the sense of classical trajectories. Consequently, some people have even wondered if quantum mechanics fundamentally cannot describe the (macroscopic) real world. [Pg.53]

The evolution of an isolated system is then given by the classical and quantum Liouville equations for the fine-grained distribution functions (i.e., the evolution is entropy-preserving) ... [Pg.55]

Abstract. We review the recent development of quantum dynamics for nonequilibrium phase transitions. To describe the detailed dynamical processes of nonequilibrium phase transitions, the Liouville-von Neumann method is applied to quenched second order phase transitions. Domain growth and topological defect formation is discussed in the second order phase transitions. Thermofield dynamics is extended to nonequilibrium phase transitions. Finally, we discuss the physical implications of nonequilibrium processes such as decoherence of order parameter and thermalization. [Pg.276]

To describe nonequilibrium phase transitions, there have been developed many methods such as the closed-time path integral by Schwinger and Keldysh (J. Schwinger et.al., 1961), the Hartree-Fock or mean field method (A. Ringwald, 1987), and the l/lV-expansion method (F. Cooper et.al., 1997 2000). In this talk, we shall employ the so-called Liouville-von Neumann (LvN) method to describe nonequilibrium phase transitions (S.P. Kim et.al., 2000 2002 2001 S.P. Kim et.al., 2003). The LvN method is a canonical method that first finds invariant operators for the quantum LvN equation and then solves exactly the... [Pg.277]

We applied the Liouville-von Neumann (LvN) method, a canonical method, to nonequilibrium quantum phase transitions. The essential idea of the LvN method is first to solve the LvN equation and then to find exact wave functionals of time-dependent quantum systems. The LvN method has several advantages that it can easily incorporate thermal theory in terms of density operators and that it can also be extended to thermofield dynamics (TFD) by using the time-dependent creation and annihilation operators, invariant operators. Combined with the oscillator representation, the LvN method provides the Fock space of a Hartree-Fock type quadratic part of the Hamiltonian, and further allows to improve wave functionals systematically either by the Green function or perturbation technique. In this sense the LvN method goes beyond the Hartree-Fock approximation. [Pg.289]

The formal similarity between Eq. (10) and the time-dependent Schrodinger equation is striking, and we shall indeed develop methods which are very reminiscent of quantum mechanics. In particular, we may calculate the eigenfunctions and eigenvalues of the unperturbed Liouville operator L0. We look for solutions of ... [Pg.165]

The goal of this chapter is twofold. First we wish to critically compare—from both a conceptional and a practical point of view—various classical and mixed quantum-classical strategies to describe non-Born-Oppenheimer dynamics. To this end. Section II introduces five multidimensional model problems, each representing a specific challenge for a classical description. Allowing for exact quantum-mechanical reference calculations, aU models have been used as benchmark problems to study approximate descriptions. In what follows, Section III describes in some detail the mean-field trajectory method and also discusses its connection to time-dependent self-consistent-field schemes. The surface-hopping method is considered in Section IV, which discusses various motivations of the ansatz as well as several variants of the implementation. Section V gives a brief account on the quantum-classical Liouville description and considers the possibility of an exact stochastic realization of its equation of motion. [Pg.250]

V. QUANTUM-CLASSICAL LIOUVILLE DESCRIPTION A. General Idea... [Pg.286]

The dynamics of classical as well as of quantum systems can be described by a Liouville equation for the time-dependent density. In quantum mechanics, the Liouville equation for the density operator p(t) reads... [Pg.286]

The similar appearance of the quantum and classical Liouville equations has motivated several workers to construct a mixed quantum-classical Liouville (QCL) description [27 4]. Hereby a partial classical limit is performed for the heavy-particle dynamics, while a quantum-mechanical formulation is retained for the light particles. The quantities p(f) and H in the mixed QC formulation are then operators with respect to the electronic degrees of freedom, described by some basis states 4> ), and classical functions with respect to the nuclear degrees of freedom with coordinates x = x, and momenta p = pj — for example. [Pg.287]

Figure 17. Initial decay of the adiabatic population probability obtained for Model I. Compared are quantum results (thick line) and standard (thin full line) and energy-conserving (dotted line) quantum-classical Liouville results. Figure 17. Initial decay of the adiabatic population probability obtained for Model I. Compared are quantum results (thick line) and standard (thin full line) and energy-conserving (dotted line) quantum-classical Liouville results.

See other pages where Liouville quantum is mentioned: [Pg.709]    [Pg.1502]    [Pg.2101]    [Pg.2249]    [Pg.175]    [Pg.466]    [Pg.715]    [Pg.191]    [Pg.244]    [Pg.246]    [Pg.246]    [Pg.276]    [Pg.284]    [Pg.290]    [Pg.364]    [Pg.364]    [Pg.366]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



© 2024 chempedia.info