Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Purple plant

Regulation of anthocyanin production involves transcriptional activators of the R2R3 MYB and the basic helix-loop-helix (bHLH) (or MYC) types (Table 3.2). This was first revealed by studies of the monocot Z. mays. It was found that the anthocyanin pathway is turned on in this species through the combined action of one member of the COLORED ALEURONEl (C1)/PURPLE PLANT (PL) MYB family and one member of the REDl (R)/BOOSTERl (B) bHLH family. The members of the MYB and bHLH families are functionally redundant, and their specific expression patterns enable spatial and temporal control of anthocyanin biosynthesis. [Pg.185]

Textile dyes were, until the nineteenth century invention of aniline dyes, derived from biological sources plants or animals, eg, insects or, as in the case of the highly prized classical dyestuff Tyrian purple, a shellfish. Some of these natural dyes are so-caUed vat dyes, eg, indigo and Tyrian purple, in which a chemical modification after binding to the fiber results in the intended color. Some others are direct dyes, eg, walnut sheU and safflower, that can be apphed directly to the fiber. The majority, however, are mordant dyes a metal salt precipitated onto the fiber facUitates the binding of the dyestuff Aluminum, iron, and tin salts ate the most common historical mordants. The color of the dyed textile depends on the mordant used for example, cochineal is crimson when mordanted with aluminum, purple with iron, and scarlet with tin (see Dyes AND DYE INTERMEDIATES). [Pg.423]

Eluorescent lamps for showing plants use a blue-white phosphor blended with a deep red-emitting phosphor. This more closely corresponds to the action spectmm for plant growth because there is Htfle green in the spectmm, African violets, for example, have leaves which appear more purple in color. The deep red emitter which is commonly used is magnesium fluorogermanate activated by Mn. ... [Pg.291]

Plant. Soybeans grow on erect, bushy aimual plants, 75—125 cm high, having hairy stems and trifoliate leaves. The flowers are white or purple or combinations thereof. Growing season varies with latitude and is 120—130 d in central Illinois. [Pg.292]

Cardiac steroids occur ia small amounts ia various plants with a wide geographical distribution. The purple foxglove Di talispurpurus has been used for centuries as both a dmg and a poison. Isolation and characterization of the various cardiac steroids have been reviewed (122,123). [Pg.427]

Animals cannot synthesize vitamin A-active compounds and necessary quantities are obtained by ingestion of vitamin A or by consumption of appropriate provitamin A compounds such as P-carotene. Carotenoids are manufactured exclusively by plants and photosynthetic bacteria. Until the discovery of vitamin A in the purple bacterium Halobacterium halobium in the 1970s, vitamin A was thought to be confined to only the animal kingdom (56). Table 4 Hsts RDA and U.S. RDA for vitamin A (67). [Pg.103]

The coffee plant is a relatively small tree or shmb belonging to the family Rubiaceae. It is often controlled to a height of 3 to 5 meters. Coffea arabica (milds) accounts for 69% of world production Coffea canephora (robustas), 30% and Coffea liberica and others, 1%. Each of these species includes several varieties. After the spring rains the plant produces white flowers. About sis months later the flowers are replaced by fmit approximately the size of a small cherry, hence they are called cherry. The fmit on a tree can include underripe, ripe (red, yellow, and purple color), and overripe cherries. It can be selectively picked (ripe only) or strip picked (predominantly ripe plus some underripe and overripe). [Pg.384]

Starches can be separated into two major components, amylose and amylopectin, which exist in different proportions in various plants. Amylose, which is a straight-chain compound and is abundant in potato starch, gives a blue colour with iodine and the chain assumes a spiral form. Amylopectin, which has a branched-chain structure, forms a red-purple product, probably by adsorption. [Pg.387]

Humans have used dyes to create color since the dawn of history. Until the mid-nineteenth century, all dyes were of natural origin. Many came from plants, such as indigo, a dark blue dye that was extracted from the leaves of a native East Indian plant. In 1856, the young English chemist William Perkin stumbled upon the first synthetic dye. Perkin was trying to synthesize quinine, a valuable antimalaria dmg. None of his experiments met with success. As he was about to discard the residue from yet another failed reaction, Perkin noticed that it was colored with a purple tinge. He washed the residue with hot alcohol and obtained a purple solution from which strikingly beautiful purple crystals precipitated. Perkin had no idea what the substance was or what reactions had created it, but he immediately saw its potential as a new dye. [Pg.200]

Cyperus rotundus L. is a weedy species, native to India, but widely distributed in countries on the Pacific Rim and islands in the Pacific Basin. Commonly referred to as purple nut sedge, it has been known in the Hawaiian Islands since the middle of the nineteenth century. In addition to its weedy nature, the taxon has attracted attention because of the antifebrile activity of its rhizomes. Chemical studies have disclosed the presence of several sesquiterpene derivatives, some of which have been implicated in the plant s medicinal use (cyperene and cyperinerol) (Wagner et ah, 1990, p. 1399). Our interest in this species is the existence of several chemotypes with interesting patterns of occurrence involving Pacific Rim countries and several oceanic islands, including the Hawaiian Islands, islands in the southern Pacific, and the Philippines. [Pg.253]

Carotenoids are essential to plants for photosynthesis, acting in light harvesting and especially in protection against destructive photooxidation. Without carotenoids, photosynthesis in an oxygenic atmosphere would be impossible. Some animals use carotenoids for coloration, especially birds (yellow and red feathers), fish and a wide variety of invertebrate animals, where complexation with protein may modify then-colors to blue, green or purple. ... [Pg.65]

As for anthocyanins, betalains are found in vacuoles and cytosols of plant cells. From the various natural sources of betalains, beetroot (Beta vulgaris) and prickly pear cactus (Opuntia ficus indica) are the only edible sources of these compounds. In the food industry, betalains are less commonly used as natural colorants from plant sources than anthocyanins and carotenoids, probably related to their more restricted distribution in nature. To date, red beetroot is the only betalain source exploited for use as a natural food coloring agent. The major betalain in red beetroot is betanin (or betanidin 5-0-P-glucoside). Prickly pear fruits contain mainly (purple-red) betanin and (yellow-orange) indicaxanthin and the color of these fruits is directly related to the betanin-to-indicaxanthin ratio (99 to 1, 1 to 8, and 2 to 1, respectively in white, yellow, and red fruits)." ... [Pg.169]

This noble but naive attempt - bearing in mind that only the molecular formula of C20H24N2O2 was known at the time - was doomed to fail. In subsequent experiments with aniline, which was fortunately contaminated with toluidines, Perkin obtained a purple product in low yield. Perkin was quick to recognize the commercial potential of his findings the natural dye, Tyrian purple, which was extracted from a species of Mediterranean snail, cost more per kilogram than gold in 1856. Within a few years the first commercial plant for the production of mauveine was in operation. [Pg.18]

Litmus is not the only plant material that turns a different color in response to acidic or basic conditions. For example, when red cabbage or beets are boiled, the solids can be separated from the liquid. The liquid is then cooled for use as an acid-base indicator. Red cabbage juice is red or purple in acidic conditions, while bases cause it to turn blue or yellow. When a solution is neutral, the juice is a bluish-purple. [Pg.34]

Nursing alcohol lamps and charcoal fires in his tiny home laboratory during the Easter vacation of 1856, a teenager slowly teased out the constituents of a black and tarry goo. Working nights, weekends, and holidays on chemistry, he was searching for a test-tube substitute for quinine, the antimalaria drug derived from plants. The black precipitate he had made was obviously not quinine, but the youth was well trained in chemistry, so he did not throw it out. Instead, he treated it with alcohol, and a fabulously intense purple appeared. Then he tested the purple on a piece of silk. [Pg.15]

A study of photosynthetic organisms other than green plants has revealed that certain bacteria, such as the purple sulfur bacteria, utilize H2S instead of H20 as a reductant in photosynthesis. The product obtained is elemental sulfur instead of oxygen ... [Pg.282]


See other pages where Purple plant is mentioned: [Pg.99]    [Pg.226]    [Pg.532]    [Pg.440]    [Pg.1656]    [Pg.99]    [Pg.226]    [Pg.532]    [Pg.440]    [Pg.1656]    [Pg.298]    [Pg.86]    [Pg.292]    [Pg.348]    [Pg.395]    [Pg.401]    [Pg.241]    [Pg.662]    [Pg.358]    [Pg.51]    [Pg.234]    [Pg.30]    [Pg.26]    [Pg.159]    [Pg.160]    [Pg.165]    [Pg.480]    [Pg.402]    [Pg.29]    [Pg.29]    [Pg.208]    [Pg.3]    [Pg.86]    [Pg.21]    [Pg.25]    [Pg.15]    [Pg.21]    [Pg.26]    [Pg.83]   
See also in sourсe #XX -- [ Pg.99 , Pg.100 , Pg.102 ]




SEARCH



Purple

© 2024 chempedia.info