Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein mosaic model, membrane structures

Figure 1. A schematic representation of the cross section of the lipid-globular protein mosaic model of membrane structure. The globular proteins (with dark lines denoting the polypeptide chain) are amphipathic molecules with their ionic and highly polar groups exposed at the exterior surfaces of the membranes the degree to which these molecules are embedded in the membrane is under thermodynamic control. The bulk of the phospholipids (with filled circles representing their polar head groups and thin wavy lines their fatty acid chains) is organized as a discontinuous bilayer. Figure 1. A schematic representation of the cross section of the lipid-globular protein mosaic model of membrane structure. The globular proteins (with dark lines denoting the polypeptide chain) are amphipathic molecules with their ionic and highly polar groups exposed at the exterior surfaces of the membranes the degree to which these molecules are embedded in the membrane is under thermodynamic control. The bulk of the phospholipids (with filled circles representing their polar head groups and thin wavy lines their fatty acid chains) is organized as a discontinuous bilayer.
Most of the properties attributed to living organisms (e.g., movement, growth, reproduction, and metabolism) depend, either directly or indirectly, on membranes. All biological membranes have the same general structure. As previously mentioned (Chapter 2), membranes contain lipid and protein molecules. In the currently accepted concept of membranes, referred to as the fluid mosaic model, membrane is a bimolecular lipid layer (lipid bilayer). The proteins, most of which float within the lipid bilayer, largely determine a membrane s biological functions. Because of the importance of membranes in biochemical processes, the remainder of Chapter 11 is devoted to a discussion of their structure and functions. [Pg.356]

The lipid-globular protein mosaic model now represents the best overall picture of membrane structure... [Pg.269]

In 1972, S. J. Singer and G. L. Nicolson proposed the fluid mosaic model for membrane structure, which suggested that membranes are dynamic structures composed of proteins and phospholipids. In this model, the phospholipid bilayer is a fluid matrix, in essence, a two-dimensional solvent for proteins. Both lipids and proteins are capable of rotational and lateral movement. [Pg.263]

FIGURE 9.6 The fluid mosaic model of membrane structure proposed by S. J. Singer and G. L. Nicolsou. In this model, the lipids and proteins are assumed to be mobile, so that they can move rapidly and laterally in the plane of the membrane. Transverse motion may also occur, but it is much slower. [Pg.264]

Figure 41-7. The fluid mosaic model of membrane structure. The membrane consists of a bimolecu-lar lipid layer with proteins inserted in it or bound to either surface. Integral membrane proteins are firmly embedded in the lipid layers. Some of these proteins completely span the bilayer and are called transmembrane proteins, while others are embedded in either the outer or inner leaflet of the lipid bilayer. Loosely bound to the outer or inner surface of the membrane are the peripheral proteins. Many of the proteins and lipids have externally exposed oligosaccharide chains. (Reproduced, with permission, from Junqueira LC, Carneiro J Basic Histology. Text Atlas, 10th ed. McGraw-Hill, 2003.)... Figure 41-7. The fluid mosaic model of membrane structure. The membrane consists of a bimolecu-lar lipid layer with proteins inserted in it or bound to either surface. Integral membrane proteins are firmly embedded in the lipid layers. Some of these proteins completely span the bilayer and are called transmembrane proteins, while others are embedded in either the outer or inner leaflet of the lipid bilayer. Loosely bound to the outer or inner surface of the membrane are the peripheral proteins. Many of the proteins and lipids have externally exposed oligosaccharide chains. (Reproduced, with permission, from Junqueira LC, Carneiro J Basic Histology. Text Atlas, 10th ed. McGraw-Hill, 2003.)...
While the fluid mosaic model of membrane stmcture has stood up well to detailed scrutiny, additional features of membrane structure and function are constantly emerging. Two structures of particular current interest, located in surface membranes, are tipid rafts and caveolae. The former are dynamic areas of the exo-plasmic leaflet of the lipid bilayer enriched in cholesterol and sphingolipids they are involved in signal transduction and possibly other processes. Caveolae may derive from lipid rafts. Many if not all of them contain the protein caveolin-1, which may be involved in their formation from rafts. Caveolae are observable by electron microscopy as flask-shaped indentations of the cell membrane. Proteins detected in caveolae include various components of the signal-transduction system (eg, the insutin receptor and some G proteins), the folate receptor, and endothetial nitric oxide synthase (eNOS). Caveolae and lipid rafts are active areas of research, and ideas concerning them and their possible roles in various diseases are rapidly evolving. [Pg.422]

Fig. 7 Diagrammatic representation of the fluid mosaic model of the cell membrane. The basic structure of the membrane is that of a lipid bilayer in which the lipid portion (long tails) points inward and the polar portion (round head ) points outward. The membrane is penenetrated by transmembrane (or integral) proteins. Attached to the surface of the membrane are peripheral proteins (inner surface) and carbohydrates that bind to lipid and protein molecules (outer surface). (Modified from Ref. 14.)... Fig. 7 Diagrammatic representation of the fluid mosaic model of the cell membrane. The basic structure of the membrane is that of a lipid bilayer in which the lipid portion (long tails) points inward and the polar portion (round head ) points outward. The membrane is penenetrated by transmembrane (or integral) proteins. Attached to the surface of the membrane are peripheral proteins (inner surface) and carbohydrates that bind to lipid and protein molecules (outer surface). (Modified from Ref. 14.)...
Fig. 6.9 Characteristic structures of biological membranes. (A) The fluid mosaic model (S. J. Singer and G. L. Nicholson) where the phospholipid component is predominant. (B) The mitochondrial membrane where the proteins prevail over the phospholipids... Fig. 6.9 Characteristic structures of biological membranes. (A) The fluid mosaic model (S. J. Singer and G. L. Nicholson) where the phospholipid component is predominant. (B) The mitochondrial membrane where the proteins prevail over the phospholipids...
FLUID-MOSAIC MODEL of membrane structure. Proteins and lipids that are embedded in the lipid bilayer diffuse rapidly in the plane of the membrane. [Pg.39]

The structure of biological and model membranes is frequently viewed in the context of the fluid mosaic model [4], Since biological membranes are composed of a mixture of various lipids, proteins, and carbohydrates the supra-structure or lateral organization of the components is not necessarily random. In order to model biological membranes, lipid assemblies of increasing complexity were studied. Extensive investigation of multicomponent monolayers (at the air-water interface) as well as bilayers have been reported. [Pg.54]

Figure 8.15 is a sketch of one possible relationship between the lipid bilayer and the membrane proteins. Molecules are free to move laterally in these membranes hence the structure pictured in Figure 8.15 is called the fluid mosaic model of a cell membrane. [Pg.396]

FIGURE 11-3 Fluid mosaic model for membrane structure. The fatty acyl chains in the interior of the membrane form a fluid, hydrophobic region. Integral proteins float in this sea of lipid, held by hydrophobic interactions with their nonpolar amino acid side chains. Both proteins and lipids are free to move laterally in the plane of the... [Pg.372]

Membranes are composed of lipids and proteins in varying combinations particular to each species, cell type, and organelle. The fluid mosaic model describes features common to all biological membranes. The lipid bilayer is the basic structural unit. Fatty acyl chains of phospholipids and the steroid nucleus of sterols are oriented toward the interior of the bilayer their hydrophobic interactions stabilize the bilayer but give it flexibility. [Pg.380]

The fluid-mosaic model for biological membranes as envisioned by Singer and Nicolson. Integral membrane proteins are embedded in the lipid bilayer peripheral proteins are attached more loosely to protruding regions of the integral proteins. The proteins are free to diffuse laterally or to rotate about an axis perpendicular to the plane of the membrane. For further information, see S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science 175 720, 1972. [Pg.392]

The cell membranes are predominantly a lipid matrix or can be considered a lipid barrier with an average width of a membrane being approximately 75 A. The membrane is described as the fluid mosaic model (Figure 6.2) which consist of (1) a bilayer of phospholipids with hydrocarbons oriented inward (hydrophobic phase), (2) hydrophilic heads oriented outward (hydrophilic phase), and (3) associated intra- and extracellular proteins and transverse the membrane. The ratio of lipid to protein varies from 5 1 for the myelin membrane to 1 5 for the inner structure of the mitochondria. However, 100% of the myelin membrane surface is lipid bilayer, whereas the inner membrane of the mitochondria may have only 40% lipid bilayer surface. In this example the proportion of membrane surface that is lipid will clearly influence distribution of toxicants of varying lipophilicity. [Pg.79]

The fluid mosaic model is now known to be correct for the structure of biological membranes, in which the membranes are considered as two-dimensional solutions of oriented lipids and globular proteins. [Pg.118]

Perhaps the most important step in the development of our current understanding of biomembranes was the introduction of the fluid mosaic model [28] (Figure 1.4) [40]. This model describes the cell membrane as a fluid two-dimensional lipid bilayer matrix of about 50 A thickness with its associated proteins. It allows for the lateral diffusion of both lipids and proteins in the plane of the membrane [41] but contains little structural detail. This model has been further developed and it has been assumed that the membrane consists of solid domains coexisting with areas of fluid-disordered membrane lipids that may also contain proteins [42]. This concept has... [Pg.11]

Fig. 14.6. Typical biological membrane structures. A liquid-mosaic model in the form proposed by A. Kortya with different types of disposition of membrane protein) (phospholipids are shown as dark circles with two wavy tails) IB1, integral, membrane-bridging protein, with a single polypeptide span IB2, the same with several spans IN and IC, integral noncytopiasmic and cytoplasmic proteins IM, integral buried proteins P, peripheral protein. (Reprinted from J. Koryta, Ions, Electrodes and Membranes, Fig. 81. Copyright Ltd. 1991. Reproduced with permission of J. Wiley Sons, Ltd.)... Fig. 14.6. Typical biological membrane structures. A liquid-mosaic model in the form proposed by A. Kortya with different types of disposition of membrane protein) (phospholipids are shown as dark circles with two wavy tails) IB1, integral, membrane-bridging protein, with a single polypeptide span IB2, the same with several spans IN and IC, integral noncytopiasmic and cytoplasmic proteins IM, integral buried proteins P, peripheral protein. (Reprinted from J. Koryta, Ions, Electrodes and Membranes, Fig. 81. Copyright Ltd. 1991. Reproduced with permission of J. Wiley Sons, Ltd.)...
The arguments developed from the beginning of this section concerning the occurrence and relationship between the lipids and proteins in membranes led S.J. Singer and G.L. Nicolson in 1972 to propose the so-called fluid mosaic model as a universal scheme for membrane structure (Fig- 6-8). [Pg.173]

Fig. 6-8 The fluid mosaic model for membrane structure. The mosaic bilayer of polar lipids is about 5 nm thick. The proteins, including a transmembrane protein, are shown as irregular lumps. Fig. 6-8 The fluid mosaic model for membrane structure. The mosaic bilayer of polar lipids is about 5 nm thick. The proteins, including a transmembrane protein, are shown as irregular lumps.
The basic tenets of the fluid mosaic model of membrane structure shown in Figure III-44 are widely accepted. The phospholipid bilayer is the basic structural feature of the membrane, and proteins or multiprotein complexes are viewed as island embedded in a sea made up by the lipid bilayer. Membranes are fluid in the sense that lipids and proteins can diffuse freely in the plane of the... [Pg.192]

Two important hypotheses which describe interactions between proteins and hydrophobic systems are the fluid mosaic model for membrane structure proposed by Singer and Nicholson (60) and the amphipathic apolipoprotein structure proposed by Segreste/ al. (56). In Singer s model for membrane structure shown in Fig. 1, it is proposed that membrane proteins float in a sea of lipid. The nonpolar regions of the protein are in contact with the nonpolar lipids present in the membrane, whereas the polar surface is exposed to the aqueous environment. [Pg.51]

Fig. 1. The lipid-globular protein fluid mosaic model of membrane structure. The solid bodies represent globular proteins, some of which span the phospholipid bilayer represented by the open circles. Adapted from Singer and Nicholson (1972). Fig. 1. The lipid-globular protein fluid mosaic model of membrane structure. The solid bodies represent globular proteins, some of which span the phospholipid bilayer represented by the open circles. Adapted from Singer and Nicholson (1972).

See other pages where Protein mosaic model, membrane structures is mentioned: [Pg.390]    [Pg.343]    [Pg.264]    [Pg.422]    [Pg.810]    [Pg.53]    [Pg.14]    [Pg.421]    [Pg.170]    [Pg.86]    [Pg.4]    [Pg.115]    [Pg.371]    [Pg.390]    [Pg.923]    [Pg.391]    [Pg.867]    [Pg.25]    [Pg.122]    [Pg.12]    [Pg.7]    [Pg.117]    [Pg.121]    [Pg.11]    [Pg.30]   
See also in sourсe #XX -- [ Pg.86 ]




SEARCH



Membrane model

Membrane modeling

Membrane mosaic model

Membrane structural models

Membranes modelling

Membranes structure

Membranes structured

Model protein

Mosaic

Mosaic membrane

Mosaic protein

Mosaicism

Mosaicity

Protein membrane structure

Protein mosaic model, membrane

© 2024 chempedia.info