Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model fluid mosaic

In 1972, S. J. Singer and G. L. Nicolson proposed the fluid mosaic model for membrane structure, which suggested that membranes are dynamic structures composed of proteins and phospholipids. In this model, the phospholipid bilayer is a fluid matrix, in essence, a two-dimensional solvent for proteins. Both lipids and proteins are capable of rotational and lateral movement. [Pg.263]

FIGURE 9.6 The fluid mosaic model of membrane structure proposed by S. J. Singer and G. L. Nicolsou. In this model, the lipids and proteins are assumed to be mobile, so that they can move rapidly and laterally in the plane of the membrane. Transverse motion may also occur, but it is much slower. [Pg.264]

Membrane proteins in many cases are randomly distributed through the plane of the membrane. This was one of the corollaries of the fluid mosaic model of Singer and Nicholson and has been experimentally verified using electron microscopy. Electron micrographs show that integral membrane proteins are often randomly distributed in the membrane, with no apparent long-range order. [Pg.266]

Singer, S. J., and Nicolson, G. L., 1972. The fluid mosaic model of the structure of cell membranes. Science 175 720-731. [Pg.295]

Figure 41-7. The fluid mosaic model of membrane structure. The membrane consists of a bimolecu-lar lipid layer with proteins inserted in it or bound to either surface. Integral membrane proteins are firmly embedded in the lipid layers. Some of these proteins completely span the bilayer and are called transmembrane proteins, while others are embedded in either the outer or inner leaflet of the lipid bilayer. Loosely bound to the outer or inner surface of the membrane are the peripheral proteins. Many of the proteins and lipids have externally exposed oligosaccharide chains. (Reproduced, with permission, from Junqueira LC, Carneiro J Basic Histology. Text Atlas, 10th ed. McGraw-Hill, 2003.)... Figure 41-7. The fluid mosaic model of membrane structure. The membrane consists of a bimolecu-lar lipid layer with proteins inserted in it or bound to either surface. Integral membrane proteins are firmly embedded in the lipid layers. Some of these proteins completely span the bilayer and are called transmembrane proteins, while others are embedded in either the outer or inner leaflet of the lipid bilayer. Loosely bound to the outer or inner surface of the membrane are the peripheral proteins. Many of the proteins and lipids have externally exposed oligosaccharide chains. (Reproduced, with permission, from Junqueira LC, Carneiro J Basic Histology. Text Atlas, 10th ed. McGraw-Hill, 2003.)...
THE FLUID MOSAIC MODEL OF MEMBRANE STRUCTURE IS WIDELY ACCEPTED... [Pg.422]

While the fluid mosaic model of membrane stmcture has stood up well to detailed scrutiny, additional features of membrane structure and function are constantly emerging. Two structures of particular current interest, located in surface membranes, are tipid rafts and caveolae. The former are dynamic areas of the exo-plasmic leaflet of the lipid bilayer enriched in cholesterol and sphingolipids they are involved in signal transduction and possibly other processes. Caveolae may derive from lipid rafts. Many if not all of them contain the protein caveolin-1, which may be involved in their formation from rafts. Caveolae are observable by electron microscopy as flask-shaped indentations of the cell membrane. Proteins detected in caveolae include various components of the signal-transduction system (eg, the insutin receptor and some G proteins), the folate receptor, and endothetial nitric oxide synthase (eNOS). Caveolae and lipid rafts are active areas of research, and ideas concerning them and their possible roles in various diseases are rapidly evolving. [Pg.422]

Our knowledge of biological membrane ultrastructure has increased considerably over the years as a result of rapid advances in instrumentation. Although there is still controversy over the most correct biological membrane model, the concept of membrane structure presented by Davson and Danielli of a lipid bilayer is perhaps the one best accepted [12,13]. The most current version of that basic model, illustrated in Fig. 7, is referred to as the fluid mosaic model of membrane structure. This model is consistent with what we have learned about the existence of specific ion channels and receptors within and along surface membranes. [Pg.40]

Fig. 7 Diagrammatic representation of the fluid mosaic model of the cell membrane. The basic structure of the membrane is that of a lipid bilayer in which the lipid portion (long tails) points inward and the polar portion (round head ) points outward. The membrane is penenetrated by transmembrane (or integral) proteins. Attached to the surface of the membrane are peripheral proteins (inner surface) and carbohydrates that bind to lipid and protein molecules (outer surface). (Modified from Ref. 14.)... Fig. 7 Diagrammatic representation of the fluid mosaic model of the cell membrane. The basic structure of the membrane is that of a lipid bilayer in which the lipid portion (long tails) points inward and the polar portion (round head ) points outward. The membrane is penenetrated by transmembrane (or integral) proteins. Attached to the surface of the membrane are peripheral proteins (inner surface) and carbohydrates that bind to lipid and protein molecules (outer surface). (Modified from Ref. 14.)...
The first membrane model to be widely accepted was that proposed by Danielli and Davson in 1935 [528]. On the basis of the observation that proteins could be adsorbed to oil droplets obtained from mackerel eggs and other research, the two scientists at University College in London proposed the sandwich of lipids model (Fig. 7.2), where a bilayer is covered on both sides by a layer of protein. The model underwent revisions over the years, as more was learned from electron microscopic and X-ray diffraction studies. It was eventually replaced in the 1970s by the current model of the membrane, known as the fluid mosaic model, proposed by Singer and Nicolson [529,530]. In the new model (Fig. 7.3), the lipid bilayer was retained, but the proteins were proposed to be globular and to freely float within the lipid bilayer, some spanning the entire bilayer. [Pg.121]

Fig. 6.9 Characteristic structures of biological membranes. (A) The fluid mosaic model (S. J. Singer and G. L. Nicholson) where the phospholipid component is predominant. (B) The mitochondrial membrane where the proteins prevail over the phospholipids... Fig. 6.9 Characteristic structures of biological membranes. (A) The fluid mosaic model (S. J. Singer and G. L. Nicholson) where the phospholipid component is predominant. (B) The mitochondrial membrane where the proteins prevail over the phospholipids...
Figure 23 Representation of a cell membrane according to the fluid mosaic model (Singer, 1974). In this model, the aqueous phospholipid interfacial microdomain separates the water compartment from the apolar membrane interior. [Redrawn from Burton et al. (1992) with permission from the publisher.]... Figure 23 Representation of a cell membrane according to the fluid mosaic model (Singer, 1974). In this model, the aqueous phospholipid interfacial microdomain separates the water compartment from the apolar membrane interior. [Redrawn from Burton et al. (1992) with permission from the publisher.]...
Wisniewska, A., J. Draus, and W. K. Subczynski. 2006. Is fluid mosaic model of biological membranes fully relevant Studies on lipid organization in model and biological membranes. Cell. Mol. Biol. Lett. 8 147-154. [Pg.212]

Murray, S.M., O Brien, R.A., Mattson, K.M., Ceccarelli, C., Sykora, R.E. and West, K.N. Jr. (2010) Fluid-mosaic model, homeoviscous adaptation, and ionic liquids dramatic lowering of the melting point by side-chain unsaturation. Angewandte Chemie International Edition, 49 (15), 2755-2758. [Pg.280]

Membranes are asymmetric. Integral membrane proteins can t be washed off. Peripheral membrane proteins can be washed off. Membrane spanning segments and lipid modification (fatty acylation and prenylation), anchor proteins in a fluid bilayer (Singer fluid mosaic model). [Pg.38]

FLUID-MOSAIC MODEL of membrane structure. Proteins and lipids that are embedded in the lipid bilayer diffuse rapidly in the plane of the membrane. [Pg.39]

Fig. 1. Fluid mosaic model of membrane. From ref. (5) with kind permission of Kluwer Academic Publisher... [Pg.14]

Jacobson K, Sheets ED, Simson R. Revisiting the fluid mosaic model of membranes. Science 1995 268 1441-1442. [Pg.31]

The fluid mosaic model conveniently describes how the constituent molecules are ordered, and it correctly describes, in first order, some of the membrane s properties. However, it does not give explicit insight into why the biological membrane has a particular structure, and how this depends on the properties of the constituent molecules and the physicochemical conditions surrounding it. For this reason, only qualitative and no quantitative use can be made of this model as it pertains to permeation properties, for example. It is instructive to review the physicochemical principles that are responsible for typical membrane characteristics. In such a survey, it is necessary to discuss simplified cases of self-assembly first, before the complexity of the biological system may be understood. The focus of this quest for principles will therefore be more on the level of the molecular nature of the membrane, rather than viewing a... [Pg.17]

A detailed justification of the surfactant parameter approach is still the subject of theoretical investigations, and we will return to several issues below. We mention that the surfactant parameter approach is consistent with the fluid mosaic model of Singer and Nicolson. It tells us that the self-assembly of amphiphiles is driven by the strong segregation of water and hydrocarbon chains, and that packing effects dominate the self-assembly process. [Pg.24]

All of the above considerations have sometimes led to a too rigid picture of the membrane structure. Of course, the mentioned types of fluctuations (protrusions, fluctuations in area per molecule, chain interdigitations) do exist and will turn out to be important. Without these, the membrane would lack any mechanism to, for example, adjust to the environmental conditions or to accommodate additives. Here we come to the central theme of this review. In order to come to predictive models for permeation in, and transport through bilayers, it is necessary to go beyond the surfactant parameter approach and the fluid mosaic model. [Pg.24]


See other pages where Model fluid mosaic is mentioned: [Pg.202]    [Pg.465]    [Pg.263]    [Pg.264]    [Pg.265]    [Pg.422]    [Pg.771]    [Pg.810]    [Pg.280]    [Pg.465]    [Pg.46]    [Pg.53]    [Pg.14]    [Pg.7]    [Pg.17]    [Pg.31]    [Pg.102]    [Pg.98]    [Pg.421]   
See also in sourсe #XX -- [ Pg.421 , Pg.422 ]

See also in sourсe #XX -- [ Pg.170 ]

See also in sourсe #XX -- [ Pg.836 ]

See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.279 ]

See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.84 ]

See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.343 ]

See also in sourсe #XX -- [ Pg.353 ]

See also in sourсe #XX -- [ Pg.836 ]

See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.382 ]

See also in sourсe #XX -- [ Pg.263 , Pg.264 , Pg.265 ]

See also in sourсe #XX -- [ Pg.1084 ]

See also in sourсe #XX -- [ Pg.252 ]

See also in sourсe #XX -- [ Pg.1000 ]

See also in sourсe #XX -- [ Pg.450 ]

See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Cell membranes fluid mosaic model

Cell plasma membrane fluid mosaic model

Fluid mosaic

Fluid mosaic model of cell membrane

Fluid mosaic model, biological membrane

Fluid mosaic model, biological membrane structure

Fluid mosaic model, membrane structure

Fluid-mosaic model 336 Subject

Fluid-mosaic model Fluids

Fluid-mosaic model Fluids

Fluid-mosaic model bilayer structure

Fluid-mosaic model carbohydrates

Fluid-mosaic model of membrane structure

Fluid-mosaic model phospholipids

Membrane Singer-Nicolson fluid-mosaic model

Membrane potentials fluid-mosaic model

Membranes fluid mosaic model

Modeling fluids

Mosaic

Mosaicism

Mosaicity

Plasma membrane fluid mosaic model

Singer-Nicholson fluid mosaic model

Singer-Nicolson fluid-mosaic model

The Fluid-Mosaic Model of Membrane Structure

© 2024 chempedia.info