Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protective film corrosion resistant

Chem. Desaip. Zinc dust CAS 7440-66-6 EINECS/ELINCS 231-175-3 Uses Corrosion inhibitor, pigment in thin-film metal protective coatings, corrosion-resist, metal coatings, aerosol paints in lubricants, chemicals Features For use with either org. or inorg. binders Reguiatory ASTM Spec. D-520 Type I compliance Properties Superfine powd. 100 /. thru 325 mesh 4.5 p median particle size sp.gr. 7.0 dens. 58.4 Ib/solid gal 99.3% total zinc, 96.5% metallic zinc, 3.1 zinc oxide ZCA Zinc Dust 64L [Zinc Corp. of Am.]... [Pg.941]

They form highly protective films which resist corrosion by restricting the ingress of carbon dioxide and also oxygen ingress. [Pg.595]

Corrosion protection of metals can take many fonns, one of which is passivation. As mentioned above, passivation is the fonnation of a thin protective film (most commonly oxide or hydrated oxide) on a metallic surface. Certain metals that are prone to passivation will fonn a thin oxide film that displaces the electrode potential of the metal by +0.5-2.0 V. The film severely hinders the difflision rate of metal ions from the electrode to tire solid-gas or solid-liquid interface, thus providing corrosion resistance. This decreased corrosion rate is best illustrated by anodic polarization curves, which are constructed by measuring the net current from an electrode into solution (the corrosion current) under an applied voltage. For passivable metals, the current will increase steadily with increasing voltage in the so-called active region until the passivating film fonns, at which point the current will rapidly decrease. This behaviour is characteristic of metals that are susceptible to passivation. [Pg.923]

Other authors have attributed the improved corrosion resistance with increasing Cr content with the increasing tendency of the oxide to become more disordered [69]. This would then suggest that an amoriDhous oxide film is more protective than a crystalline one, due to a bond and stmctural flexibility in amoriDhous films. [Pg.2725]

Lead is one of the most stable of fabricated materials because of excellent corrosion resistance to air, water, and soil. An initial reaction with these elements results in the formation of protective coatings of insoluble lead compounds. For example, in the presence of oxygen, water attacks lead, but if the water contains carbonates and siUcates, protective films or tarnishes form and the corrosion becomes exceedingly slow. [Pg.33]

Lead and many of its ahoys exhibit excehent corrosion resistance owing to the rapid formation of a passive, impermeable, insoluble protective film when the lead is exposed to the corrosive solution (see Corrosion and corrosion control). [Pg.62]

Because the corrosion resistance of lead and lead alloys is associated with the formation of the protective corrosion film, removal of the film in any way causes rapid attack. Thus the velocity of a solution passing over a surface can lead to significantly increased attack, particularly if the solution contains suspended particulate material. Lead is also attacked rapidly in the presence of high velocity deionised water. The lack of dissolved minerals in such water prevents the formation of an insoluble protective film. In most solutions, lead and lead alloys are resistant to galvanic corrosion because of the formation of a nonconductive corrosion film. In contact with more noble metals, however, lead can undergo galvanic attack which is accelerated by stray electrical currents. [Pg.63]

In neutral and alkaline environments, the magnesium hydroxide product can form a surface film which offers considerable protection to the pure metal or its common alloys. Electron diffraction studies of the film formed ia humid air iadicate that it is amorphous, with the oxidation rate reported to be less than 0.01 /rni/yr. If the humidity level is sufficiently high, so that condensation occurs on the surface of the sample, the amorphous film is found to contain at least some crystalline magnesium hydroxide (bmcite). The crystalline magnesium hydroxide is also protective ia deionized water at room temperature. The aeration of the water has Httie or no measurable effect on the corrosion resistance. However, as the water temperature is iacreased to 100°C, the protective capacity of the film begias to erode, particularly ia the presence of certain cathodic contaminants ia either the metal or the water (121,122). [Pg.332]

Aluminum and aluminum alloys are employed in many appHcations because of the abiHty to resist corrosion. Corrosion resistance is attributable to the tightly adherent, protective oxide film present on the surface of the products. This film is 5 —10 nm thick when formed in air if dismpted it begins to form immediately in most environments. The weathering characteristics of several common aluminum alloy sheet products used for architectural appHcations are shown in Eigure 30. The loss in strength as a result of atmospheric weathering and corrosion is small, and the rate decreases with time. The amount of... [Pg.124]

Alloys having varying degrees of corrosion resistance have been developed in response to various environmental needs. At the lower end of the alloying scale are the low alloy steels. These are kon-base alloys containing from 0.5—3.0 wt % Ni, Cr, Mo, or Cu and controlled amounts of P, N, and S. The exact composition varies with the manufacturer. The corrosion resistance of the alloy is based on the protective nature of the surface film, which in turn is based on the physical and chemical properties of the oxide film. As a rule, this alloying reduces the rate of corrosion by 50% over the fkst few years of atmosphere exposure. Low alloy steels have been used outdoors with protection. [Pg.282]

The contact ends of printed circuit boards are copper. Alloys of nickel and iron are used as substrates in hermetic connectors in which glass (qv) is the dielectric material. Terminals are fabricated from brass or copper from nickel, for high temperature appHcations from aluminum, when aluminum conductors are used and from steel when high strength is required. Because steel has poor corrosion resistance, it is always plated using a protective metal, such as tin (see Tin and tin alloys). Other substrates can be unplated when high contact normal forces, usually more than 5 N, are available to mechanically dismpt insulating oxide films on the surfaces and thereby assure metaUic contact (see Corrosion and corrosion control). [Pg.30]

Cavitation Formation of transient voids or vacuum bubbles in a liquid stream passing over a surface is called cavitation. This is often encountered arouna propellers, rudders, and struts and in pumps. When these bubbles collapse on a metal surface, there is a severe impact or explosive effec t that can cause considerable mechanical damage, and corrosion can be greatly accelerated because of the destruction of protective films. Redesign or a more resistant metal is generally required to avoid this problem. [Pg.2419]

Actually, in many cases strength and mechanical properties become of secondaiy importance in process applications, compared with resistance to the corrosive surroundings. All common heat-resistant alloys form oxides when exposed to hot oxidizing environments. Whether the alloy is resistant depends upon whether the oxide is stable and forms a protective film. Thus, mild steel is seldom used above 480°C (900°F) because of excessive scaling rates. Higher temperatures require chromium (see Fig. 28-25). Thus, type 502 steel, with 4 to 6 percent Cr, is acceptable to 620°C (I,I50°F). A 9 to 12 percent Cr steel will handle 730°C (I,350°F) 14 to 18 percent Cr extends the limit to 800°C (I,500°F) and 27 percent Cr to I,I00°C (2,000°F). [Pg.2464]

Stainless steels contain 11% or more chromium. Table 5.1 lists common commercial grades and compositions of stainless steels. It is chromium that imparts the stainless character to steel. Oxygen combines with chromium and iron to form a highly adherent and protective oxide film. If the film is ruptured in certain oxidizing environments, it rapidly heals with no substantial corrosion. This film does not readily form until at least 11% chromium is dissolved in the alloy. Below 11% chromium, corrosion resistance to oxygenated water is almost the same as in unalloyed iron. [Pg.103]

Metals that depend on a relatively thick protective coating of corrosion product for corrosion resistance are frequently subject to erosion-corrosion. This is due to the poor adherence of these coatings relative to the thin films formed by the classical passive metals, such as stainless steel and titanium. Both stainless steel and titanium are relatively immune to erosion-corrosion in most cooling water environments. [Pg.240]

There are no films or protective surface films on active metals, e.g., mild steel in acid or saline solutions. Passive metals are protected by dense, less readily soluble surface films (see Section 2.3.1.2). These include, for example, high-alloy Cr steels and NiCr alloys as well as A1 and Ti in neutral solutions. Selective corrosion of alloys is largely a result of local concentration differences of alloying elements which are important for corrosion resistance e.g., Cr [4],... [Pg.32]

Applications include high-performance insulation for wire and cables (particularly heater cables), and corrosion-resistant linings for pumps, valves, pipes and other chemical equipment. Its availability in the form of film and tubing has led to its demand for both corrosion protection and antistick applications. [Pg.378]

The corrosion resistance of lead is due to the formation of a thin surface film of an insoluble lead salt that protects the metal from sulfuric acid and related compounds of any strength at ordinary temperatures. Even when (he temperature increases to nearly 100°C the rates of corrosion are still low. However, strong, hot sulfuric acid attacks lead rapidly, especially if the acid is flowing. [Pg.86]

The corrosion resistance of unalloyed titanium in hydrochloric or sulfuric acids can be increased significantly by anodic protection, which maintains the oxide film so that the corrosion will be negligible even in severely reducing conditions. [Pg.96]

Secondly, crystal defects might be expected to affect the corrosion behaviour of metals which owe their corrosion resistance to the presence of thin passive or thick protective films on their surface. The crystal defects and structural features discussed in Section 20.4 might, in principle, be expected to affect the thickness, strength, adhesion, porosity, composition, solubility, etc. of these surface films, and hence, in turn, the corrosion behaviour of the filmed metal surfaces. Clearly, this is the more common situation in practice. [Pg.36]

Metals which owe their good corrosion resistance to the presence of thin, passive or protective surface films may be susceptible to pitting attack when the surface film breaks down locally and does not reform. Thus stainless steels, mild steels, aluminium alloys, and nickel and copper-base alloys (as well as many other less common alloys) may all be susceptible to pitting attack under certain environmental conditions, and pitting corrosion provides an excellent example of the way in which crystal defects of various kinds can affect the integrity of surface films and hence corrosion behaviour. [Pg.49]

Localised attack can, however, occur on a surface of metal that is apparently uniform, and this occurs particularly with the highly passive metals that depend on a thin invisible protective film of oxide for their corrosion resistance. In such cases submicroscopic defects in the passive film may form the sites at which pits are initiated, thus giving rise to a situation similar to that shown in Fig. 1.46. [Pg.156]

Previous considerations of pitting have been largely confined to metals and alloys that have a strong tendency to passivate, but since the pitting of copper has a number of unusual features it is appropriate to consider it in some detail. Reference to the potential-pH diagram for the Cu-H O (Section 4.2) system shows that in neutral solutions at the potentials encountered in oxygenated waters the stable form of copper is Cu O, and the corrosion resistance of copper thus depends upon whether or not the CU2O forms a protective film. [Pg.184]


See other pages where Protective film corrosion resistant is mentioned: [Pg.494]    [Pg.997]    [Pg.3]    [Pg.1705]    [Pg.585]    [Pg.2731]    [Pg.389]    [Pg.115]    [Pg.134]    [Pg.163]    [Pg.40]    [Pg.370]    [Pg.397]    [Pg.412]    [Pg.121]    [Pg.349]    [Pg.2427]    [Pg.2435]    [Pg.219]    [Pg.485]    [Pg.95]    [Pg.1274]    [Pg.1275]    [Pg.22]    [Pg.41]    [Pg.194]    [Pg.372]    [Pg.437]   
See also in sourсe #XX -- [ Pg.849 ]




SEARCH



Corrosion resistance

Film resistance

Film resistivity

Protective films

Resist film

Resists films

© 2024 chempedia.info