Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties from phase data

The basic challenges for parallel test reactor development for high-throughput experimentation are, apart from technological challenges, related to technical demands that arise with the special issues for parallel test reactors, which are identical with the demands for conventional test reactors for gas-phase reactions. The criteria that must be fulfilled to obtain intrinsic catalyst properties from experimental data relate mainly to mass and heat transfer. A sufficient contact between the reactants and the catalyst must be insured to avoid mass transfer limitations inside and outside of the catalyst particles. Isothermal operation under laboratory conditions and avoidance of heat transfer limitations are also crucial. As a general quality check prior to operation intra- and extra-particle limitations should be... [Pg.20]

Figure 114 Liquid-phase properties from VLE data for methyl ethyl ketone(l)/toluene(2) at 50°C. Figure 114 Liquid-phase properties from VLE data for methyl ethyl ketone(l)/toluene(2) at 50°C.
Many additional consistency tests can be derived from phase equiUbrium constraints. From thermodynamics, the activity coefficient is known to be the fundamental basis of many properties and parameters of engineering interest. Therefore, data for such quantities as Henry s constant, octanol—water partition coefficient, aqueous solubiUty, and solubiUty of water in chemicals are related to solution activity coefficients and other properties through fundamental equiUbrium relationships (10,23,24). Accurate, consistent data should be expected to satisfy these and other thermodynamic requirements. Furthermore, equiUbrium models may permit a missing property value to be calculated from those values that are known (2). [Pg.236]

The semiconducting properties of the compounds of the SbSI type (see Table XXVIII) were predicted by Mooser and Pearson in 1958 228). They were first confirmed for SbSI, for which photoconductivity was found in 1960 243). The breakthrough was the observation of fer-roelectricity in this material 117) and other SbSI type compounds 244 see Table XXIX), in addition to phase transitions 184), nonlinear optical behavior 156), piezoelectric behavior 44), and electromechanical 183) and other properties. These photoconductors exhibit abnormally large temperature-coefficients for their band gaps they are strongly piezoelectric. Some are ferroelectric (see Table XXIX). They have anomalous electrooptic and optomechanical properties, namely, elongation or contraction under illumination. As already mentioned, these fields cannot be treated in any detail in this review for those interested in ferroelectricity, review articles 224, 352) are mentioned. The heat capacity of SbSI has been measured from - 180 to -l- 40°C and, from these data, the excess entropy of the ferro-paraelectric transition... [Pg.410]

Order and polydispersity are key parameters that characterize many self-assembled systems. However, accurate measurement of particle sizes in concentrated solution-phase systems, and determination of crystallinity for thin-film systems, remain problematic. While inverse methods such as scattering and diffraction provide measures of these properties, often the physical information derived from such data is ambiguous and model dependent. Hence development of improved theory and data analysis methods for extracting real-space information from inverse methods is a priority. [Pg.146]

When using vapor pressure and solubility data, it is essential to ensure that both properties apply to the same chemical phase, i.e., both are of the liquid, or of the solid. Occasionally, a solubility is of a solid while a vapor pressure is extrapolated from higher temperature liquid phase data. [Pg.13]

Comparing Figure 1d with Figure le, it is evident that there are two important features of the electrochemical interface which cannot be reproduced yet by the simulation the above mentioned ionic excess charge in the diffuse layer and the bulk electrolyte ions with their screening properties. Fortunately, the condition of zero diffuse layer charge can often be extracted from electrochemical data such that the absence of the diffuse layer does not seriously depreciate the purpose of the UHV experiment. Similarly, it may be expected that the structural properties of the inner layer, tor a certain composition, do not depend on the electrolyte concentration in the bulk solution phase. [Pg.56]

The theory developed for perfect gases could be extended to solids, if the partition functions of crystals could be expressed in terms of a set of vibrational frequencies that correspond to its various fundamental modes of vibration (O Neil 1986). By estimating thermodynamic properties from elastic, structural, and spectroscopic data, Kieffer (1982) and subsequently Clayton and Kieffer (1991) calculated oxygen isotope partition function ratios and from these calculations derived a set of fractionation factors for silicate minerals. The calculations have no inherent temperature limitations and can be applied to any phase for which adequate spectroscopic and mechanical data are available. They are, however, limited in accuracy as a consequence of the approximations needed to carry out the calculations and the limited accuracy of the spectroscopic data. [Pg.21]

It is hoped that the terms donor and acceptor strengths will be reserved for inferences made about Lewis acid-base properties from data in the gas phase or poorly solvating solvents. This is to be contrasted with the more complex phenomena contributing to acidity and basicity. [Pg.89]

This article reviews the following solution properties of liquid-crystalline stiff-chain polymers (1) osmotic pressure and osmotic compressibility, (2) phase behavior involving liquid crystal phasefs), (3) orientational order parameter, (4) translational and rotational diffusion coefficients, (5) zero-shear viscosity, and (6) rheological behavior in the liquid crystal state. Among the related theories, the scaled particle theory is chosen to compare with experimental results for properties (1H3), the fuzzy cylinder model theory for properties (4) and (5), and Doi s theory for property (6). In most cases the agreement between experiment and theory is satisfactory, enabling one to predict solution properties from basic molecular parameters. Procedures for data analysis are described in detail. [Pg.85]

The value of the liquid phase mass transfer coefficient can be obtained from the experimental data for physical absorption of oxygen into blood saturated with oxygen, or estimated from the data with the same apparatus for physical oxygen absorption into water or a reference liquid or solution with known physical properties. Mass transfer coefficients for liquids flowing through or across tubes or hollow fibers can usually be correlated by equations, such as Equation 6.26a for... [Pg.260]

A general formulation of the problem of solid-liquid phase equilibrium in quaternary systems was presented and required the evaluation of two thermodynamic quantities, By and Ty. Four methods for calculating Gy from experimental data were suggested. With these methods, reliable values of Gy for most compound semiconductors could be determined. The term Ty involves the deviation of the liquid solution from ideal behavior relative to that in the solid. This term is less important than the individual activity coefficients because of a partial cancellation of the composition and temperature dependence of the individual activity coefficients. The thermodynamic data base available for liquid mixtures is far more extensive than that for solid solutions. Future work aimed at measurement of solid-mixture properties would be helpful in identifying miscibility limits and their relation to LPE as a problem of constrained equilibrium. [Pg.171]

In the following sections we shall focus on the structure and properties of the two-dimensional phases formed by the bent-core liquid crystals. In Sect. 2 we describe the structure studies by the X-ray diffraction (XRD) method, optical studies, and the response of different structures to the external electric field. In Sect. 3 we give theoretical models of the director and layer structure in 2D modulated phases and discuss how to reconstruct electron density maps from XRD data. [Pg.284]

Figure 2. Radioactivity chromatogram of sulfur compounds derivatized with monobromobimane. The reversed-phase HPLC separation is based on the hydrophobic properties of the bimane-sulfur adducts but peak area is based on "S-radioactivity of the compounds. At time 0 sulfite and thiosulfate impurities are present before addition of the hepatopancrease tissue homogenate. This was a 60 min experiment to determine the sulfide detoxifying functions of the hepatopancrease of the hydrothermal vent crab Bythograea thermydron. During this time the proportion of radioactivity in sulfide rapidly decreases and thiosulfate and sulfate accumulate as end products. Two intermediates, pi and p2 accumulate then decrease during the experiment. The two intermediates are believed to be polysulfides based on similar elution times of polysulfide standards. (Figure is the unpublished chromatograms from the data in Vetter et al. (24)-) continued on next page. Figure 2. Radioactivity chromatogram of sulfur compounds derivatized with monobromobimane. The reversed-phase HPLC separation is based on the hydrophobic properties of the bimane-sulfur adducts but peak area is based on "S-radioactivity of the compounds. At time 0 sulfite and thiosulfate impurities are present before addition of the hepatopancrease tissue homogenate. This was a 60 min experiment to determine the sulfide detoxifying functions of the hepatopancrease of the hydrothermal vent crab Bythograea thermydron. During this time the proportion of radioactivity in sulfide rapidly decreases and thiosulfate and sulfate accumulate as end products. Two intermediates, pi and p2 accumulate then decrease during the experiment. The two intermediates are believed to be polysulfides based on similar elution times of polysulfide standards. (Figure is the unpublished chromatograms from the data in Vetter et al. (24)-) continued on next page.
Changes in mobile-phase components such as pH, ionic strength, and water content have been systematically studied [3,310,316,317]. These studies indicate that retention of basic analytes is mediated primarily by the cation-exchange properties of the silica [2]. Interestingly, it has been suggested from retention data of various pharmaceuticals that the retention mechanisms of silica with aqueous eluents and reversed-phase systems are similar [317,318]. Due to the ion-exchange properties of silica, mobile-phase pH adjustments are useful in changing the retention of ionic compounds. [Pg.348]


See other pages where Properties from phase data is mentioned: [Pg.400]    [Pg.409]    [Pg.413]    [Pg.309]    [Pg.615]    [Pg.383]    [Pg.21]    [Pg.454]    [Pg.81]    [Pg.31]    [Pg.868]    [Pg.947]    [Pg.203]    [Pg.530]    [Pg.514]    [Pg.9]    [Pg.250]    [Pg.128]    [Pg.476]    [Pg.112]    [Pg.212]    [Pg.59]    [Pg.346]    [Pg.31]    [Pg.497]    [Pg.724]    [Pg.295]    [Pg.567]    [Pg.14]    [Pg.92]    [Pg.150]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



Phase properties

Property data

© 2024 chempedia.info