Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1-Propanol MODIFIED

FIGURE 6.5 The structures of the FPEX solvent, consisting of 4,4, (5 )-di(fert-butylcyclohexano)-18-crown-6(DtBuCH18C6),calix[4]arene-bis(terf-octylbenzo-crown-6) (BOBCalixC6), and l-(2,2,3,3-tetrafluoropropoxy)-3-(4- ec-butylphenoxy)-2-propanol modifier (Cs-7SB). [Pg.371]

Veuthey and Haerdi reported the separation of amphetamines using packed-column SFC [26]. The amphetamines were derivatized with 9-fluorenylmethyl chloroformate and chromatographed with a methanol or 2-propanol-modified carbon dioxide as the mobil phase. The separations were compared on bare silica and aminopropyl-bonded silica columns. Both columns gave comparable results and the separation of all five amphetamines (methylamphetamine, amphetamine, phenethylamine, ephed-rine, and norephedrine) was achieved in less than 5 min. Both methanol and 2-propanol-modified carbon dioxide gave comparable results. It was observed that the modifier concentration had more effect on the solvating power than the mobile-phase density. [Pg.391]

The 2 propanol modifies the interaction of the components of the thylakoid membranes and consequently we observe a decrease of the rate of the photoindu-ced electron transfer as shown by the lowering of the speed of DCPIP reduction and of the amplitude of the 515 nm absorption change. [Pg.437]

Nonpolar organic mobile phases, such as hexane with ethanol or 2-propanol as typical polar modifiers, are most commonly used with these types of phases. Under these conditions, retention seems to foUow normal phase-type behavior (eg, increased mobile phase polarity produces decreased retention). The normal mobile-phase components only weakly interact with the stationary phase and are easily displaced by the chiral analytes thereby promoting enantiospecific interactions. Some of the Pirkle-types of phases have also been used, to a lesser extent, in the reversed phase mode. [Pg.63]

PVF has low solubdity in all solvents below about 100°C (61). Polymers with greater solubdity have been prepared using 0.1% 2-propanol polymerization modifier and were characterized in /V, /V- dim ethyl form am i de solution containing 0.1 AlLiBr. ranged from 76,000 to 234,000... [Pg.380]

Membranes and Osmosis. Membranes based on PEI can be used for the dehydration of organic solvents such as 2-propanol, methyl ethyl ketone, and toluene (451), and for concentrating seawater (452—454). On exposure to ultrasound waves, aqueous PEI salt solutions and brominated poly(2,6-dimethylphenylene oxide) form stable emulsions from which it is possible to cast membranes in which submicrometer capsules of the salt solution ate embedded (455). The rate of release of the salt solution can be altered by surface—active substances. In membranes, PEI can act as a proton source in the generation of a photocurrent (456). The formation of a PEI coating on ion-exchange membranes modifies the transport properties and results in permanent selectivity of the membrane (457). The electrochemical testing of salts (458) is another possible appHcation of PEI. [Pg.14]

Propane, 1-propanol, and heavy ends (the last are made by aldol condensation) are minor by-products of the hydroformylation step. A number of transition-metal carbonyls (qv), eg, Co, Fe, Ni, Rh, and Ir, have been used to cataly2e the oxo reaction, but cobalt and rhodium are the only economically practical choices. In the United States, Texas Eastman, Union Carbide, and Hoechst Celanese make 1-propanol by oxo technology (11). Texas Eastman, which had used conventional cobalt oxo technology with an HCo(CO)4 catalyst, switched to a phosphine-modified Rh catalyst ia 1989 (11) (see Oxo process). In Europe, 1-propanol is made by Hoechst AG and BASE AG (12). [Pg.118]

In the United States, the reportable quantity of 1-propanol for spills under CERCLA "Superfund" is 100 Ib/d (45.4 kg/d). However, no reportable quantity is assigned for transport (43). The substance is on the list for atmospheric standards, as defined iu 40 CER 60.489 (47). The iatent of these standards is to require all newly constmcted, modified, and reconstmcted manufacturiug units to use the best demonstrated system of continuous emission reduction for equipment leaks of volatile organic compounds (47). 1-Propanol is also on the right-to-know regulations of the states of Connecticut,... [Pg.120]

Hydrogenation. Gas-phase catalytic hydrogenation of succinic anhydride yields y-butyrolactone [96-48-0] (GBL), tetrahydrofiiran [109-99-9] (THF), 1,4-butanediol (BDO), or a mixture of these products, depending on the experimental conditions. Catalysts mentioned in the Hterature include copper chromites with various additives (72), copper—zinc oxides with promoters (73—75), and mthenium (76). The same products are obtained by hquid-phase hydrogenation catalysts used include Pd with various modifiers on various carriers (77—80), Ru on C (81) or Ru complexes (82,83), Rh on C (79), Cu—Co—Mn oxides (84), Co—Ni—Re oxides (85), Cu—Ti oxides (86), Ca—Mo—Ni on diatomaceous earth (87), and Mo—Ba—Re oxides (88). Chemical reduction of succinic anhydride to GBL or THF can be performed with 2-propanol in the presence of Zr02 catalyst (89,90). [Pg.535]

Retention and stereoselectivity on the BSA columns can be changed by the use of additives to the aqueous mobile phase (30). Hydrophobic compounds generally are highly retained on the BSA, and a mobile-phase modifier such as 1-propanol can be added to obtain reasonable retention times. The retention and optical resolution of charged solutes such as carboxyUc acids or amines can be controlled by pH and ionic strength of the mobile phase. [Pg.100]

PZN-PT, and YBa2Cug02 g. For the preparation of PZT thin films, the most frequently used precursors have been lead acetate and 2irconium and titanium alkoxides, especially the propoxides. Short-chain alcohols, such as methanol and propanol, have been used most often as solvents, although there have been several successful investigations of the preparation of PZT films from the methoxyethanol solvent system. The use of acetic acid as a solvent and chemical modifier has also been reported. Whereas PZT thin films with exceUent ferroelectric properties have been prepared by sol-gel deposition, there has been relatively Httle effort directed toward understanding solution chemistry effects on thin-film properties. [Pg.346]

The effect of concentration of cationic (cetylpyridinium chloride, CPC), anionic (sodium dodecylsulfate, SDS) and nonionic (Twin-80) surfactants as well as effect of pH value on the characteristics of TLC separ ation has been investigated. The best separ ation of three components has been achieved with 210 M CPC and LIO M Twin-80 solutions, at pH 7 (phosphate buffer). Individual solution of SDS didn t provide effective separation of caffeine, theophylline, theobromine, the rate of separ ation was low. The separ ation factor and rate of separ ation was increase by adding of modifiers - alcohol 1- propanol (6 % vol.) or 1-butanol (0.1 % vol.) in SDS solution. The optimal concentration of SDS is 210 M. [Pg.350]

The yield of product is increased to 81% (analyzed by evolution of M-butane) if 0.67 g. (0.0033 mole) of aluminum isopropoxide is added to the suspension of magnesium before addition of the halide solution. Alternatively, an equivalent amount of 2-propanol and iodine (giving 0.01 mole of CsII OMgl) may be added. These modified procedures (particularly the second) also shorten the induction periods and render unnecessary any special drying of the reagents and apparatus and the use of fresh magnesium. [Pg.115]

The prepared MAC adsorbents were tested for benzene, toluene, 0-, m-, p-xylene, methanol, ethanol, iso-propanol, and MEK. The modified content of all MACs was 5wt% with respect to AC. The specific surface areas and amounts of VOC adsorbed of MACs prepared in this study are shown in Table 1. The amounts of VOC adsorbed on 5wt%-MAC with acids and alkali show a similar tendency. However, the amount of VOC adsorbed on 5wt%-PA/AC was relatively large in spite of the decrease of specific surface area excepting in case of o-xylene, m-xylene, and MEK. This suggests that the adsorption of relatively large molecules such as 0-xylene, m-xylene, and MEK was suppressed, while that of small molecules was enhanced. It can be therefore speculated that the phosphoric acid narrowed the micropores but changed the chemical nature of surface to adsorb the organic materials strongly. [Pg.458]

The variation of amount of VOC adsorbed and the variation of BET surface area with modified contents were shown in Fig. 1. The optimum modified content was lwt% for benzene, toluene, p-xylene, methanol, ethanol and iso-propanol, but the amount of o-xylene, m-xylene, and MEK adsorbed were decreased with increasing modified contents. Interestingly, the amount of benzene, p-xylene, and ethanol adsorbed on lwt%-PA/AC was 1.5 to 2 times that on purified AC. The BET surface area of lwt%-PA/AC (1109m /g) took the maximum value. [Pg.458]

It can thus be concluded that the change from secondary to primary structure does not modify the entropic group. Classified 1 -propanol can be noted under group 8, and the superior primary alcohols can be studied. [Pg.46]

Figure 6.6 Estinated critical temperature and pressure for binary nixtures of 2-propanol in carbon dioxide as a function of the mole fraction of organic modifier. Figure 6.6 Estinated critical temperature and pressure for binary nixtures of 2-propanol in carbon dioxide as a function of the mole fraction of organic modifier.

See other pages where 1-Propanol MODIFIED is mentioned: [Pg.258]    [Pg.155]    [Pg.197]    [Pg.252]    [Pg.54]    [Pg.66]    [Pg.66]    [Pg.99]    [Pg.183]    [Pg.176]    [Pg.116]    [Pg.168]    [Pg.71]    [Pg.73]    [Pg.96]    [Pg.460]    [Pg.260]    [Pg.117]    [Pg.216]    [Pg.769]    [Pg.210]    [Pg.316]    [Pg.707]    [Pg.233]    [Pg.210]    [Pg.301]    [Pg.105]    [Pg.104]    [Pg.76]    [Pg.184]    [Pg.477]    [Pg.150]    [Pg.362]   
See also in sourсe #XX -- [ Pg.53 , Pg.75 ]




SEARCH



© 2024 chempedia.info