Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process synthesis reaction

Nicol W, Hemier M, Hildebrandt D, Glasser D. The attainable region and process synthesis reaction systems with external cooling and heating. Chem Eng Sci 2001 56 173-191. [Pg.416]

In a reaction, bonds are broken and made. In some cases free electrons are shifted also. The rcaciion center contains all the bond.s being broken or made during the reaction as well as all the electron rearrangement processes. The reaction uhstme-ture is the structural subunit of atoms and bonds around the reaction center that has to be present in a compound in order for the reaction to proceed in the foi"ward (synthesis) direction (Figure 10,3-32). Both characteristics of a reaction can be used to. search for reactions with an identical reaction center and reaction substructure but with different structural units beyond the reaction substructure. For example, this can be achieved by searching in a reaction database. [Pg.571]

Plasteins ate formed from soy protein hydrolysates with a variety of microbial proteases (149). Preferred conditions for hydrolysis and synthesis ate obtained with an enzyme-to-substrate ratio of 1 100, and a temperature of 37°C for 24—72 h. A substrate concentration of 30 wt %, 80% hydrolyzed, gives an 80% net yield of plastein from the synthesis reaction. However, these results ate based on a 1% protein solution used in the hydrolysis step this would be too low for an economical process (see Microbial transformations). [Pg.471]

Even though form amide was synthesized as early as 1863 by W. A. Hoffmann from ethyl formate [109-94-4] and ammonia, it only became accessible on a large scale, and thus iadustrially important, after development of high pressure production technology. In the 1990s, form amide is mainly manufactured either by direct synthesis from carbon monoxide and ammonia, or more importandy ia a two-stage process by reaction of methyl formate (from carbon monoxide and methanol) with ammonia. [Pg.507]

These pioneers understood the interplay between chemical equiUbrium and reaction kinetics indeed, Haber s research, motivated by the development of a commercial process, helped to spur the development of the principles of physical chemistry that account for the effects of temperature and pressure on chemical equiUbrium and kinetics. The ammonia synthesis reaction is strongly equiUbrium limited. The equiUbrium conversion to ammonia is favored by high pressure and low temperature. Haber therefore recognized that the key to a successful process for making ammonia from hydrogen and nitrogen was a catalyst with a high activity to allow operation at low temperatures where the equiUbrium is relatively favorable. [Pg.161]

High Pressure Synthesis. Reaction at pressures of 10 to 20 MPa (100—200 atm) and temperatures ia the 400°C range is known as the high pressure process. [Pg.290]

The principal advance ia technology for SASOL I relative to the German Fischer-Tropsch plants was the development of a fluidized-bed reactor/regenerator system designed by M. W. Kellogg for the synthesis reaction. The reactor consists of an entrained-flow reactor ia series with a fluidized-bed regenerator (Fig. 14). Each fluidized-bed reactor processes 80,000 m /h of feed at a temperature of 320 to 330°C and 2.2 MPa (22 atm), and produces approximately 300 m (2000 barrels) per day of Hquid hydrocarbon product with a catalyst circulation rate of over 6000 t/h (49). [Pg.291]

There are, however, numerous appHcations forthcoming ia medium- to small-scale processiag. Especially attractive on this scale is the pharmaceutical fine chemical or high value added chemical synthesis (see Fine chemicals). In these processes multistep reactions are common, and an electroorganic reaction step can aid ia process simplification. Off the shelf lab electrochemical cells, which have scaled-up versions, are also available. The materials of constmction for these cells are compatible with most organic chemicals. [Pg.86]

An unusual case of addition of a carbanion to an unconjugated carbon-carbon double bond is shown in Scheme 47a. The subsequent transfer of the amide group is also noteworthy (80CC1042). The intramolecular addition of a carbanion to an aryne is a more widely established process. Such reactions have been applied to the synthesis of indoles (Scheme 47b) (75CC745> and oxindoles (Scheme 47c) (63JOC1,80JA3646). [Pg.115]

Process Synthesis Route How to make the product What route What reactions, materials, starting points Research and Development chemists research Known synthesis routes and techniques... [Pg.16]

FIGURE 1.9 (a) Amino acids build proteins by connecting the n-carboxyl C atom of one amino acid to the n-amino N atom of the next amino acid in line, (b) Polysaccharides are built by combining the C-1 of one sugar to the C-4 O of the next sugar in the polymer, (c) Nucleic acids are polymers of nucleotides linked by bonds between the 3 -OH of the ribose ring of one nucleotide to the 5 -P04 of its neighboring nucleotide. All three of these polymerization processes involve bond formations accompanied by the elimination of water (dehydration synthesis reactions). [Pg.13]

The production of ammonia is of historical interest because it represents the first important application of thermodynamics to an industrial process. Considering the synthesis reaction of ammonia from its elements, the calculated reaction heat (AH) and free energy change (AG) at room temperature are approximately -46 and -16.5 KJ/mol, respectively. Although the calculated equilibrium constant = 3.6 X 108 at room temperature is substantially high, no reaction occurs under these conditions, and the rate is practically zero. The ammonia synthesis reaction could be represented as follows ... [Pg.144]

A low-pressure process has been developed by ICl operating at about 50 atm (700 psi) using a new active copper-based catalyst at 240°C. The synthesis reaction occurs over a bed of heterogeneous catalyst arranged in either sequential adiabatic beds or placed within heat transfer tubes. The reaction is limited by equilibrium, and methanol concentration at the converter s exit rarely exceeds 7%. The converter effluent is cooled to 40°C to condense product methanol, and the unreacted gases are recycled. Crude methanol from the separator contains water and low levels of by-products, which are removed using a two-column distillation system. Figure 5-5 shows the ICl methanol synthesis process. [Pg.151]

The process (chemical reaction) by which a chemical product is made, as depicted by an equation, is called synthesis. Working in laboratories, chemists devise new ways to synthesize known chemicals or new chemicals never made before and not found in nature. Synthesis chemists working in industrial laboratories also must find or develop uses for the new chemicals that they synthesize while considering the costs of eventual manufacture. [Pg.11]

Modeling, Simulation and Control of Chemical Reaction Systems Nano Materials Synthesis and Application Novel Reactors and Processes Polymer Reaction Engineering... [Pg.921]

They have developed direct asymmetric synthesis of quaternary carbon centers via addition-elimination process. The reactions of chiral nitroenamines with zinc enolates of a-substituted-8-lactones afford a,a-disubstituted-6-lactones with a high ee through addition-elimination process, in which (5)-(+)-2-(methoxy methy l)pyrrolidine (SMP) is used as a chiral leaving group (Eq. 4.96).119 Application of this method to other substrates such as a-substituted ketones, esters, and amides has failed to yield high ee. [Pg.100]

One of the most important, and perhaps the best studied, applications of three-phase fluidization is for the hydrogenation of carbon monoxide by the Fischer-Tropsch (F-T) process in the liquid phase. In this process, synthesis gas of relatively low hydrogen to carbon monoxide ratio (0.6 0.7) is bubbled through a slurry of precipitated catalyst suspended in a heavy oil medium. The F-T synthesis forms saturated and unsaturated hydrocarbon compounds ranging from methane to high-melting paraffin waxes (MW > 20,000) via the following two-step reaction ... [Pg.619]

Chemical synthesis of polycrystalline aggregates by room-temperature precipitation or sol-gel processes or reaction of elements in tube furnaces. [Pg.240]

Ferreira developed a novel method for the preparation of masked 1,4-dicarbonyl derivatives for utilization in the Paal-Knorr synthesis of pyrroles <00SC3215>. In this process, the reaction between diazocompound 3 and n-butyl vinyl ether using dirhodium tetraacetate as catalyst provides dihydrofurans 4 which are easily converted into substituted... [Pg.112]

As another case study a process synthesis of an emulsion polymerization process is given (Hurme and Heikkila, 1998). In emulsion polymerization unsaturated monomers or their solutions are dispersed in a continuous phase with the aid of an emulsifier and polymerized. The product is a dispersion of polymers and called a latex. The raw materials are highly flammable unsaturated hydrocarbons and the reaction is exothermic which both cause a risk. The main phases and systems in an emulsion polymerization plant are listed in Table 31. [Pg.115]


See other pages where Process synthesis reaction is mentioned: [Pg.165]    [Pg.277]    [Pg.43]    [Pg.292]    [Pg.81]    [Pg.56]    [Pg.155]    [Pg.158]    [Pg.290]    [Pg.295]    [Pg.244]    [Pg.489]    [Pg.51]    [Pg.287]    [Pg.304]    [Pg.2]    [Pg.1167]    [Pg.363]    [Pg.427]    [Pg.289]    [Pg.4]    [Pg.388]    [Pg.84]    [Pg.130]    [Pg.124]    [Pg.117]    [Pg.45]    [Pg.578]    [Pg.185]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Process synthesis

Processing synthesis

© 2024 chempedia.info