Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process laboratory-scale

Bisio A. Introduction to scale-up. In Bisio A, Kabel RL, eds. Scale-up of Chemical Processes Laboratory Scale Tests to Successful Commercial Size Design. New York Wiley, 1985 15-16. [Pg.127]

With a view to determining optimum conditions for each stage of this process, laboratory scale extractions of fresh Ascophyllum nodosum have been carried out under a variety of conditions, and the effect on the yield and quality of product has been assessed. [Pg.83]

After development of a new process scheme at laboratory scale, constmction and operation of pilot-plant faciUties to confirm scale-up information often require two or three years. An additional two to three years is commonly required for final design, fabrication of special equipment, and constmction of the plant. Thus, projections of raw material costs and availabiUty five to ten years into the future become important in adopting any new process significantly different from the current technology. [Pg.152]

Batch vs Continuous Reactors. Usually, continuous reactors yield much lower energy use because of increased opportunities for heat interchange. Sometimes the savings are even greater in downstream separation units than in the reaction step itself Especially for batch reactors, any use of refrigeration to remove heat should be critically reviewed. Batch processes often evolve Httle from the laboratory-scale glassware setups where refrigeration is a convenience. [Pg.83]

Hydrogen sulfide and carbon react at 900°C to give a 70% yield of carbon disulfide (102,103). A process for reaction of coke and hydrogen sulfide or sulfur in an electric-resistance-heated fluidized bed has been demonstrated on a laboratory scale (104). Hydrogen sulfide also forms carbon disulfide in reactions with carbon monoxide at 600—1125°C (105) or carbon dioxide at 350—450°C in the presence of catalysts (106). [Pg.31]

A number of special processes have been developed for difficult separations, such as the separation of the stable isotopes of uranium and those of other elements (see Nuclear reactors Uraniumand uranium compounds). Two of these processes, gaseous diffusion and gas centrifugation, are used by several nations on a multibillion doUar scale to separate partially the uranium isotopes and to produce a much more valuable fuel for nuclear power reactors. Because separation in these special processes depends upon the different rates of diffusion of the components, the processes are often referred to collectively as diffusion separation methods. There is also a thermal diffusion process used on a modest scale for the separation of heflum-group gases (qv) and on a laboratory scale for the separation of various other materials. Thermal diffusion is not discussed herein. [Pg.75]

Direct-Liquefaction Kinetics All direct-liquefac tion processes consist of three basic steps (1) coal slurrying in a vehicle solvent, (2) coal dissolution under high pressure and temperature, and (3) transfer of hydrogen to the dissolved coal. However, the specific reac tion pathways and associated kinetics are not known in detail. Overall reaction schemes and semiempirical relationships have been generated by the individual process developers, but apphcations are process specific and limited to the range of the specific data bases. More extensive research into liquefaction kinetics has been conducted on the laboratory scale, and these results are discussed below. [Pg.2372]

The models presented correctly predict blend time and reaction product distribution. The reaction model correctly predicts the effects of scale, impeller speed, and feed location. This shows that such models can provide valuable tools for designing chemical reactors. Process problems may be avoided by using CFM early in the design stage. When designing an industrial chemical reactor it is recommended that the values of the model constants are determined on a laboratory scale. The reaction model constants can then be used to optimize the product conversion on the production scale varying agitator speed and feed position. [Pg.807]

Four column systems are available from Amersham Pharmacia Biotech that can be used to pack SEC media for various applications at the laboratory scale. These include C, XK, SR, and HR column systems. All of the laboratory-scale columns are constructed with borosilicate glass tubes. Columns for larger scale process applications include INdEX, BPG, EineLINE, BPSS, and Stack columns. The larger scale columns are constructed to meet stringent validation requirements for the production of biopharmaceuticals. Each of the column types are described. [Pg.54]

Most of the byproduct HCl is used captively, primarily in oxyhydrochlorination processes for making vinyl chloride and chlorinated solvents or for Mg processing (p, 110), The scale of the industry is enormous for example, 5,2 million tonnes of HCl per annum in the US alone (1993), HCl gas for industrial use can be transmitted without difficult over moderate distances in mild-steel piping or in tank cars or trailers. It is also available in cylinders of varying size down to laboratory scale lecture bottles containing 225 g. Aqueous hydrochloric acid consumption (1993) was 1,57 Mt (100% basis). Price for anhydrous HCl is 330/tonne and for 31,4% aqueous acid 73/tonne (1993) depending on plant location and amount required. [Pg.811]

The reaction is convenient for both laboratory scale and industrial preparations. Another large-scale process is the reaction of CI2 gas on moist Na2C03 in a tower or rotary tube reactor ... [Pg.846]

The Kolbe-Schmitt reaction is limited to phenol, substituted phenols and certain heteroaromatics. The classical procedure is carried out by application of high pressure using carbon dioxide without solvent yields are often only moderate. In contrast to the minor importance on laboratory scale, the large scale process for the synthesis of salicylic acid is of great importance in the pharmaceutical industry. [Pg.186]

In order to determine rigorously the process parameters, a few relevant parameters are to be experimentally determined on a laboratory scale column. [Pg.262]

The processing technologies for elastomeric blends, thermoplastic elastomer-based on mechanical mixing, and elastomer-plastic vulcanizates are distinctly different. Depending on the type and nature of blend, size, and their final application, a wide range of processing equipment is now in use both industrially as well as in laboratory scale preparation. [Pg.465]

The oldest technology involved in the elastomer blending and vulcanization process is essentially a temperature controlled two roll mill as well as internal mixers followed by an optimum degree of crosslinking in autoclave molds (compression, injection, etc.) in a batch process or in a continuous process such as continuously heated tube or radiated tubes. A few examples of laboratory scale preparation of special purpose elastomeric blends is cited here. [Pg.465]

Rubber blends with cure rate mismatch is a burning issue for elastomer sandwich products. For example, in a conveyor belt composite structure there is always a combination of two to three special purpose rubbers and, depending on the rubber composition, the curatives are different. Hence, those composite rubber formulations need special processing and formulation to avoid a gross dissimilarity in their cure rate. Recent research in this area indicated that the modification of one or more rubbers with the same cure sites would be a possible solution. Thus, chlorosulfonated polyethylene (CSP) rubber was modified in laboratory scale with 10 wt% of 93% active meta-phenylene bismaleimide (BMI) and 0.5 wt% of dimethyl-di-(/ r/-butyl-peroxy) hexane (catalyst). Mixing was carried out in an oil heated Banbury-type mixer at 150-160°C. The addition of a catalyst was very critical. After 2 min high-shear dispersive melt mix-... [Pg.465]

A third method of aldehyde synthesis is one that we ll mention here just briefly and then return to in Section 21.6. Certain carboxylic acid derivatives can be partially reduced to yield aldehydes. The partial reduction of an ester by dhsobutylaluminum hydride (DIBAH), for instance, is an important laboratory-scale method of aldehyde synthesis, and mechanistically related processes also occur in biological pathways. The reaction is normally carried out at —78 °C (dry-ice temperature) in toluene solution. [Pg.699]

The ultimate goal of process development is to achieve feasibility where it is possible to produce amino adds on a large scale at a production cost per kg of amino add comparable to, or cheaper than, the processes currently used by other companies. If we presume that the technical performance (fermentation and recovery) are sorted out on a laboratory scale and scaling up looks promising, then it is time to find out whether it is possible to operate economically on a large scale. [Pg.258]

A bioreactor is a vessel in which an organism is cultivated and grown in a controlled manner to form the by-product. In some cases specialised organisms are cultivated to produce very specific products such as antibiotics. The laboratory scale of a bioreactor is in the range 2-100 litres, but in commercial processes or in large-scale operation this may be up to 100 m3.4,5 Initially the term fermenter was used to describe these vessels, but in strict teims fermentation is an anaerobic process whereas the major proportion of fermenter uses aerobic conditions. The term bioreactor has been introduced to describe fermentation vessels for growing the microorganisms under aerobic or anaerobic conditions. [Pg.4]


See other pages where Process laboratory-scale is mentioned: [Pg.167]    [Pg.277]    [Pg.42]    [Pg.50]    [Pg.515]    [Pg.72]    [Pg.181]    [Pg.89]    [Pg.23]    [Pg.258]    [Pg.378]    [Pg.468]    [Pg.184]    [Pg.257]    [Pg.257]    [Pg.288]    [Pg.384]    [Pg.224]    [Pg.585]    [Pg.1034]    [Pg.555]    [Pg.260]    [Pg.71]    [Pg.37]    [Pg.809]    [Pg.193]    [Pg.832]    [Pg.28]    [Pg.280]    [Pg.335]   
See also in sourсe #XX -- [ Pg.110 , Pg.111 , Pg.112 , Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 ]

See also in sourсe #XX -- [ Pg.171 , Pg.203 , Pg.265 , Pg.269 , Pg.365 ]




SEARCH



Good Laboratory Practice (GLP) regulations and their impact on the small-scale processing procedures

Laboratory scale

Laboratory-scale processing

Laboratory-scale processing

Laboratory-scale processing of the recycled material

Microreactors laboratory-scale process development

Nitrogen fixation laboratory-scale processes

Problems with laboratory-scale processing

Process Development at Laboratory Scale

Process laboratory processing

Process laboratory-scale processing

Process laboratory-scale processing

Process scale

Processing scale

© 2024 chempedia.info