Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Problems Iodine

Its tendency to collect in the thyroid gland makes iodine e.speciaily useful for diagnosing and treating thyroid problems. Iodine-123 is widely used in medical imaging, and 1-124 is useful in immunotherapy. [Pg.259]

The mass-133 chain represents a fission reactor problem. Iodine-133 with a 21-hour half-life decays to 5-day xenon-133, which has a high cross section for thermal neutrons. This was discovered when the first Hanford reactors unexpectedly shut down after a few hours operation. Fortunately, these reactors were built with provision for the extra fuel that could override the xenon effect. However, when a reactor is shut down, the xenon-133 grows in from its 1-133 parent. Unless it is started up again in a few hours, several days must pass before the Xe-133 has decayed enough to allow restart. [Pg.1242]

Introduction. The removal of iodine from the fuel solution of a homogeneous reactor is desirable from the standpoint of minimizing the biological hazard and neutron poisoning due to iodine and reducing the production of gaseous xenon and its associated problems. Iodine will also... [Pg.319]

As an example, we mention the detection of iodine atoms in their P3/2 ground state with a 3 + 2 multiphoton ionization process at a laser wavelength of 474.3 run. Excited iodine atoms ( Pi/2) can also be detected selectively as the resonance condition is reached at a different laser wavelength of 477.7 run. As an example, figure B2.5.17 hows REMPI iodine atom detection after IR laser photolysis of CF I. This pump-probe experiment involves two, delayed, laser pulses, with a 200 ns IR photolysis pulse and a 10 ns probe pulse, which detects iodine atoms at different times during and after the photolysis pulse. This experiment illustrates a frindamental problem of product detection by multiphoton ionization with its high intensity, the short-wavelength probe laser radiation alone can photolyse the... [Pg.2135]

Many problems have been reported (163), and the process has been abandoned because of the difficulty in handling sohds. Processes which are thought to have the best likelihood of success ate based on sulfuric acid decomposition. Three prominent cycles are based on this reaction the General Atomics iodine—sulfur cycle... [Pg.426]

It is difficult to define the normal range of iodine intake in humans, and despite efforts to provide iodine supplementation in many geographic areas of the world, endemic iodine deficiency and attendant goiter remain a world health problem (147). Exposure to excess iodine may sometimes lead to the development of thyroid disease. This unusual type of iodide-induced goiter has been found, for example, in 10% of the population of a Japanese island where fishermen and their families consume large quantities of an iodine-rich seaweed and have an iodine intake as high as 200 mg/d (148). [Pg.367]

Iodine deficiency in less developed countries is still a serious problem. Whereas, iodized and iodated salt technology is readily available and relatively inexpensive, market distribution conditions, as well as a lack of understanding by consumers, prevents iodized salt from reaching much of the population in less-developed countries. [Pg.186]

A unique problem arises when reducing the fissile isotope The amount of that can be reduced is limited by its critical mass. In these cases, where the charge must be kept relatively small, calcium becomes the preferred reductant, and iodine is often used as a reaction booster. This method was introduced by Baker in 1946 (54). Researchers at Los Alamos National Laboratory have recently introduced a laser-initiated modification to this reduction process that offers several advantages (55). A carbon dioxide laser is used to initiate the reaction between UF and calcium metal. This new method does not requite induction heating in a closed bomb, nor does it utilize iodine as a booster. This promising technology has been demonstrated on a 200 g scale. [Pg.321]

Tincture of iodine and aqueous iodine are not as popular as they used to be because they stain skin and clothes a brown color and also because of their toxicity. These problems have been considerably reduced, but not completely resolved, in the production of iodophors. [Pg.122]

Radical substitution reactions by iodine are not practical because the abstraction of hydrogen from hydrocarbons by iodine is endothermic, even for stable radicals. The enthalpy of the overall reaction is also slightly endothermic. Thus, because of both the kinetic problem excluding a chain reaction and an unfavorable equilibrium constant for substitution, iodination cannot proceed by a radical-chain mechanism. [Pg.705]

On a smaller scale, the largest producer of iodine is Japan where it is extracted from. seaweed containing more than 0.05 parts per million. The most important industrial iodine compound is silver iodide used with silver bromide in photography. Iodine is important in medicine for treating thyroid problems by adding it to table salt. It is used directly as a disinfectant, and a component of d vs. Crystalline silver iodide is used for cloud seeding. [Pg.268]

The disadvantage of this method is that the dichloridites and monochloridites are sensitive to water and thus could not be used readily in automated oligonucleotide synthesis. This problem was overcome by Beaucage and Caruthers, who developed the phosphoramidite approach. In this method, derivatives of the form R 0P(NR2)2 react with one equivalent of an alcohol (catalyzed by species such as l//-tetrazole) to form diesters, R OP(OR")NR2, which usually are stable, easily handled solids. These phosphoroamidites are easily converted to phosphite triesters by reaction with a second alcohol (catalyzed by l//-tetrazole). Here, again, oxidation of the phosphite triester with aqueous iodine affords the phosphate triester. Over the years, numerous protective groups and amines have been examined for use in this approach. Much of the work has been reviewed. ... [Pg.665]

Fonnation of C-X bonds is not normally a problem but the Grignaid route can occasionally be useful when normal halogen exchange fuls. Thus iodination of Me3(XH2CI cannot be achieved by reaction with Nal or similar reagents but direct iodinadon of the conesponding Grignaid effects a smooth conversion ... [Pg.135]

Using iodine as their starting point, they experimented with a series of compounds including the anilines and a series of metals near the bottom of the periodic table. Lead turned out to be the most effective of the additives tested. But lead alone caused a number of problems, including the accumulation of Its oxide in engine components, and particularly the cylinders, valves, and spark plugs. [Pg.549]

A valuable feature of the Nin/Crn-mediated Nozaki-Takai-Hiyama-Kishi coupling of vinyl iodides and aldehydes is that the stereochemistry of the vinyl iodide partner is reflected in the allylic alcohol coupling product, at least when disubstituted or trans tri-substituted vinyl iodides are employed.68 It is, therefore, imperative that the trans vinyl iodide stereochemistry in 159 be rigorously defined. Of the various ways in which this objective could be achieved, a regioselective syn addition of the Zr-H bond of Schwartz s reagent (Cp2ZrHCl) to the alkyne function in 165, followed by exposure of the resulting vinylzirconium species to iodine, seemed to constitute a distinctly direct solution to this important problem. Alkyne 165 could conceivably be derived in short order from compound 166, the projected product of an asymmetric crotylboration of achiral aldehyde 168. [Pg.606]

There have been rather more kinetic studies of molecular halogenation than of positive halogenation and apart from the problems with iodination noted above, interpretation of the kinetics has presented few difficulties. [Pg.97]

Potassium iodide is added as a nutrient to prevent goiter, a thyroid problem caused by lack of iodine, and to prevent a form of mental retardation associated with iodine deficiency. A project started by the Michigan State Medical Society in 1924 promoted the addition of iodine to table salt, and by the mid-1950s three-quarters of U.S. households used only iodized salt. Potassium iodide makes up 0.06 percent to 0.01 percent of table salt by weight. Sometimes cuprous iodide—iodide of copper—is used instead as the source of iodine. [Pg.28]

In the decomposition of benzoyl peroxide, the fate of benzoyloxy radicals escaping from polarizing primary pairs remains something of a mystery. Benzoic acid is formed but shows no polarization in and C-spectra, and the carboxylic acid produced in other peroxide decompositions behaves similarly (Kaptein, 1971b Kaptein et al., 1972). Some light is shed on the problem by studies of the thermal decomposition of 4-chlorobenzoyl peroxide in hexachloroacetone containing iodine as... [Pg.86]

Formation of halo-lactams by a similar procedure is difficult, but the problems have been overcome. Formation of a triflate followed by treatment with iodine leads to the iodo-lactam, for example ... [Pg.1043]

The data on the iodination of ethane given in Problem 7.1 have been... [Pg.252]

Example 7.20 Use linear regression analysis to determine k, m, and n for the data taken at 1 atm total pressure for the ethane iodination reaction in Problem 7.1. [Pg.257]

The second problem involves the measurement of pKa values for carbonyl and thiocarbonyl derivatives. Grieg and Johnson (157) have pointed out that the measurement of pKa values for very weak bases (11) is an inaccurate and arbitrary process. Of particular difficulty for our purposes is the fact that different carbonyl derivatives may require different acidity functions. As a result of this situation, no attempt was made to make correlations of pKa data for carbonyl and thiocarbonyl derivatives with eq. (2). Because accurate pKa values can be measured for imines, these values were correlated with eq. (2), although the conformational problem remains. The imine sets were first studied by Charton and Charton (73), who correlated them with eq. (2). No correlations of data for carbonyl or thiocarbonyl derivatives with eq. (2) are extant in the literature. Bhaskar, Gosavi, and Rao (158) have reported that AG values for complex formation of substituted thioureas with iodine are a linear function of the Taft a values. Drago, Wenz, and Carlson (159) have reported similar results for complex formation between iodine and substituted amides. Oloffson (160) has reported a linear relationship between -AH for the complex of substituted N,N-dimethylamides with SbCls and the ffj constants. [Pg.138]

C03-0144. The thyroid gland produces hormones that help regulate body temperature, metabolic rate, reproduction, the synthesis of red blod cells, and more. Iodine must be present in the diet for these thyroid hormones to be produced. Iodine deficiency leads to sluggishness and weight gain, and can cause severe problems in the development of a fetus. One thyroid hormone is thyroxine, whose chemical formula is... [Pg.197]

C08-0073. Repeat the calculation of Problem 8.37 for K and I, using 500 kJ/mol as the estimated second electron affinity of iodine and assuming no change in distance of closest approach. [Pg.562]

The nuclear explosions that devastated Hiroshima and Nagasaki killed 100,000 to 200,000 people instantaneously. Probably an equal number died later, victims of the radiation released in those explosions. Millions of people were exposed to the radioactivity released by the accident at the Chernobyl nuclear power plant. The full health effects of that accident may never be known, but 31 people died of radiation sickness within a few weeks of the accident, and more than 2000 people have developed thyroid cancer through exposure to radioactive iodine released in the accident. Even low levels of radiation can cause health problems. For this reason, workers in facilities that use radioisotopes monitor their exposure to radiation continually, and they must be rotated to other duties if their total exposure exceeds prescribed levels. [Pg.1599]


See other pages where Problems Iodine is mentioned: [Pg.847]    [Pg.2135]    [Pg.67]    [Pg.502]    [Pg.386]    [Pg.47]    [Pg.33]    [Pg.339]    [Pg.318]    [Pg.267]    [Pg.155]    [Pg.194]    [Pg.87]    [Pg.35]    [Pg.130]    [Pg.78]    [Pg.87]    [Pg.197]    [Pg.536]    [Pg.109]    [Pg.471]    [Pg.90]    [Pg.497]    [Pg.186]    [Pg.146]    [Pg.209]   
See also in sourсe #XX -- [ Pg.256 ]




SEARCH



© 2024 chempedia.info