Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure-vacuum filters

Generally, in MPPs one centrifuge or pressure/vacuum filter, one drier, and one fractionation system of reasonable capacity are installed for every two or three reactors/crystallizers. On average, about 2 to 5 m solvent storage capacity and the same amount for intermediates are needed per 1 m of reactor capacity. [Pg.440]

Prime advantages and applications General use for maximum clarity. Reduced dosage on pressure vacuum filters. Good on rotary filters Excellent for precoating coarse screens. Highest purity for absorption of oil from condensate and removal of iron from caustic. [Pg.122]

Dewatering of high value products and particle systems sensitive to high pressure drops are the most likely candidates for electrofiltration. The Dorr-OHver Electrofilter is a commercial example of a vacuum filter adapted for electrofiltration. [Pg.390]

The most important feature of the pressure filters which use hydrauHc pressure to drive the process is that they can generate a pressure drop across the medium of more than 1 x 10 Pa which is the theoretical limit of vacuum filters. While the use of a high pressure drop is often advantageous, lea ding to higher outputs, drier cakes, or greater clarity of the overflow, this is not necessarily the case. Eor compressible cakes, an increase in pressure drop leads to a decrease in permeabiUty of the cake and hence to a lower filtration rate relative to a given pressure drop. [Pg.393]

This reduction in permeabiUty due to cake consoHdation or coUapse may be so large that it may nullify or even overtake the advantage of using high pressures in the first place and there is then no reason for using the generally more expensive pressure filtration hardware. While a simple Hquid pump may be cheaper than the vacuum pump needed with vacuum filters, if air displacement dewatering is to foUow filtration in pressure filters, an air compressor has to be used and is expensive. [Pg.393]

In vacuum filters, the driving force for filtration results from the appHcation of a suction on the filtrate side of the medium. Although the theoretical pressure drop available for vacuum filtration is 100 kPa, in practice it is often limited to 70 or 80 kPa. [Pg.394]

In apphcations where the fraction of fine particles in the soHds of the feed slurry is low, a simple and relatively cheap vacuum filter can yield cakes with moisture contents comparable to those discharged by pressure filters. Vacuum filters include the only truly continuous filters built in large sizes that can provide for washing, drying, and other process requirements. [Pg.394]

The pressure versions of the nutsche filter, which falls into this category, are either simple pressurized filter boxes or more sophisticated agitated nutsches, much the same in design as the enclosed agitated vacuum filters described eadier. These are extremely versatile, batch-operated filters, used in many industries, eg, agrochemistry, pharmaceuticals, or dyestuff production. [Pg.402]

Most continuous pressure filters available (ca 1993) have their roots in vacuum filtration technology. A rotary dmm or rotary disk vacuum filter can be adapted to pressure by enclosing it in a pressure cover however, the disadvantages of this measure are evident. The enclosure is a pressure vessel which is heavy and expensive, the progress of filtration cannot be watched, and the removal of the cake from the vessel is difficult. Other complications of this method are caused by the necessity of arranging for two or more differential pressures between the inside and outside of the filter, which requires a troublesome system of pressure regulating valves. [Pg.405]

Drum Filters. The rotary dmm filter, also borrowed from vacuum filtration, makes relatively poor use of the space available in the pressure vessel, and the filtration areas and capacities of such filters cannot possibly match those of the disk pressure filters. In spite of this disadvantage, however, the pressure dmm filter has been extensively developed. [Pg.406]

Filtration. In many mineral processing operations, filtration follows thickening and it is used primarily to produce a soHd product that is very low in moisture. Filtration equipment can be either continuous or batch type and either constant pressure (vacuum) or constant rate. In the constant pressure type, filtration rate decreases gradually as the cake builds up, whereas in the constant rate type the pressure is increased gradually to maintain a certain filtration rate as the cake resistance builds. The size of the device is specified by the required filter surface area. [Pg.414]

Most continuous vacuum filters are the constant pressure type. Their main use is in dewatering concentrated slurries such as concentrates. They belong to three classes the disk, dmm, and horizontal filters. Disk, and to a lesser extent, dmm filters, are the mainstay for most final dewatering. These filters remove most fine particles from a process stream. [Pg.414]

Both vacuum and pressure filters are used. Turbidity is more easily removed by vacuum filters, usually at 85% efficiency. Flow rates are low, ca 4 mL/(cm -min) [1 gal/(ft -min)] these filters are not practical for treating large volumes. [Pg.293]

Following carbonation, the product can be further purified by screening. This screening, also used to control the maximum size of the product, is followed by dewatering (qv). Rotary vacuum filters, pressure filters, or centrifuges are used in the mechanical removal of water. Final drying is accompHshed as with natural calcium carbonate in either a rotary, spray, or flash dryer. Products having mean particle sizes from submicrometers (- O-OS fiTo) to several micrometers are available. [Pg.411]

Capillary Suction Processes. The force needed to remove water from capillaries increases proportionately with a decrease in capillary radius, exceeding 1400 kPa (200 psi) in a 1-p.m-diameter capillary. Some attempts have been made to use this force as a way to dewater sludges and cakes by providing smaller dry capillaries to suck up the water (27). Sectors of a vacuum filter have been made of microporous ceramic, which conducts the moisture from the cake into the sector and removes the water on the inside by vacuum. Pore size is sufficiently small that the difference in pressure during vacuum is insufficient to displace water from the sector material, thus allowing a smaller vacuum pump to be effective (126). [Pg.25]

In the operational sense, some filters are batch devices, whereas others are continuous. This difference provides the principal basis for classifying cake filters in the discussion that follows. The driving force by which the filter functions—hydrostatic head ( gravity ), pressure imposed by a pump or a gas blanket, or atmospheric pressure ( vacuum )— will be used as a secondary criterion. [Pg.1708]

Nutsche Filters A nutsche is one of the simplest batch filters. It is a tank with a false bottom, perforated or porous, which may either support a filter medium or act as the filter medium. The shiny is fed into the filter vessel, and separation occurs by gravity flow, gas pressure, vacuum, or a combination of these forces. The term nutsche comes from the German term for sucking, and vacuum is the common operating mode. [Pg.1708]

Pressure leaf filters are used to separate much the same lands of slurries as are filter presses and are used much more extensively than filter presses for filter-aid filtrations. They should be seriously considered whenever uniformity of production permits long-time operation under essentially constant filtration conditions, when thorough washing with a minimum of hquor is desired, or when vapors or fumes make closed construction desirable. Under such conditions, if the filter medium does not require frequent changing, they may show a considerable advantage in cycle and labor economy over a filter press, which has a lower initial cost, and advantages of economy and flexibility over continuous vacuum filters, which have a higher first cost. [Pg.1714]

Rotary Drum Filters The rotaiy drum filter is the most widely used of the continuous filters. There are many design variations, including operation as either a pressure filter or a vacuum filter. The major difference between designs is in the technique for cake discharge, to be discussed later. All the alternatives are characterized by a horizontal-axis drum covered on the cylindrical portion by filter medium over a grid support structure to allow drainage to manifolds. Basic materials of construc tion may be metals or plastics. Sizes (in terms of filter areas) range from 0.37 to 186 m (4 to 2000 ft ). [Pg.1714]

Continuous Precoat Filters These filters may be operated as either pressure or vacuum filters, although vacuum operation is the prevailing one. The filters are really not continuous but have an extremely long batch cycle (1 to 10 days). Apphcations are for continuous clarification of liqmds from slurries containing 50 to 5000 ppm of solids when only very thin unacceptable cakes would form on other filters and where perfect clarity is required. [Pg.1717]

It is known that the specific resistance for centrifuge cake, especially for compressible cake, is greater than that of the pressure or vacuum filter. Therefore, the specific resistance has to be measured from centrifuge tests for different cake thicknesses so as to scale up accurately for centrifuge performance. It cannot be extrapolated from pressure and vacuum filtration data. For cake thickness that is much smaller compared to the basket radius, Eq. (18-116 7) can be approximated by... [Pg.1740]

When gravity is insufficient to induce flow, the pressure of the atmosphere is allowed to act on one side of the filtering medium, while a negative or suction pressure is applied on the discharge side. This type of filtering device is referred to as a vacuum filter. The application of vacuum filters is typically limited to 15 psi pressure, although there are applications where this value can be exceeded. Note... [Pg.74]

This family of filters consist of a vertical pressure vessel with a horizontal filter plate at the bottom. The filtrate from this equipment flows out a nozzle on the bottom of the filter. These devises are usually used for slurries where large amounts of solids are being collected. Variations of this equipment include equipment with removable lower heads for easy cake removal, ability to pressure or vacuum filter, ability to wash the filter cake, an agitator to break-up and rewash the filter cake, and heating or cooling jackets for the whole vessel. The Nutsche filter is the industrial version of the well known laboratory scale Buchner Funnel with the exception that it is designed to operate under either on vacuum or pressure. [Pg.199]

Vacuum Filters. If, due to the nature of the liquid, the gravity filter be comes unsuitable, a vacuum filter is used to create a substantial pressure difference. Vacuum filters can be divided into the following types ... [Pg.167]


See other pages where Pressure-vacuum filters is mentioned: [Pg.763]    [Pg.446]    [Pg.35]    [Pg.573]    [Pg.266]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.1683]    [Pg.1693]    [Pg.1750]    [Pg.1928]    [Pg.2229]    [Pg.357]    [Pg.367]    [Pg.212]    [Pg.563]    [Pg.268]    [Pg.837]    [Pg.109]    [Pg.562]    [Pg.77]    [Pg.407]    [Pg.441]    [Pg.459]   
See also in sourсe #XX -- [ Pg.5 , Pg.424 ]




SEARCH



DDS vacuum pressure filter

Pressure filtering

Pressure filters

Vacuum filters

© 2024 chempedia.info