Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure copolymer

Influence of Chain Architecture on High-Pressure Copolymer Solution Behavior Experiments and Modeling... [Pg.11]

Materials. Trimethylsilylmethyl methacrylate (Sl) and chloro-methylstyrene (CMS) (mixed m,p isomers) were obtained from Petrarch Systems Inc. and Dow Chemical Co. Inc., respectively. Both monomers were purified by distillation at reduced pressure. Copolymers were prepared by free-radical solution polymerization at 85 C in toluene. Reactions were initiated using benzoyl peroxide. [Pg.111]

Cosolvency effects on high pressure copolymer solutions. J. Polym. Sci. [Pg.525]

Resin manufacturers have long recognized the excessive deformation of polytetrafluoroethylene in applications where parts such as gaskets and seals experience high pressures. Copolymers oftetrafluo-roethylene with small amoimts of other fluorinated monomer are known as Modified PTFE resins and have been reported to exhibit reduced deformation under load. Examples of the properties of some of the commercial products can be seen in Tables 3.22-3.24 and Figs. 3.20 and 3.21. Significant reduction in deformation under load can be achieved, particularly at elevated temperatures and pressures. [Pg.36]

Production of high pressure copolymers will lead to significant higher energy ... [Pg.260]

Vinyl resins - In the coatings industry, vinyl resins usually refer to either poly(vinyl chloride) (PVC) or poly(vinyl acetate) (PVAc) which is widely used in interior and exterior latex paints. Produced usually by emulsion polymerization, a PVAc homopolymer is too hard to allow its colloidal latex particles to coalesce well into a continuous film at ambient temperatures. Most PVAc emulsions used in the paint industry are copolymers with a plasticizing monomer such as dibutyl maleate, 2-ethyhexyl acrylate, n-butyl acrylate, dibutyl fumarate, isodecyl acrylate, or ethyl acrylate. By polymerizing under pressure, copolymers of vinyl acetate and ethylene are also produced for latex paints. External plasticizers such as dibutyl phthalate are used as well. All these methods not only soften the polymer to allow the latex particles to coalesce into a continuous film, but also impart the film flexiblity needed in exterior house paints. [Pg.115]

B.p. — 29X. Monomer used to form polymers (only under rather drastic conditions) or copolymers with C2F4 and vinylidene fluoride, CH2 = CF2. Hexafluoropropene may be prepared by thermal decomposition of CF3CF2CF2C02Na or is prepared commercially by low pressure pyrolysis of C2F4. [Pg.203]

An important industrial example of W/O emulsions arises in water-in-crude-oil emulsions that form during production. These emulsions must be broken to aid transportation and refining [43]. These suspensions have been extensively studied by Sjoblom and co-workers [10, 13, 14] and Wasan and co-workers [44]. Stabilization arises from combinations of surface-active components, asphaltenes, polymers, and particles the composition depends on the source of the crude oil. Certain copolymers can mimic the emulsion stabilizing fractions of crude oil and have been studied in terms of their pressure-area behavior [45]. [Pg.508]

An ideal gas obeys Dalton s law that is, the total pressure is the sum of the partial pressures of the components. An ideal solution obeys Raoult s law that is, the partial pressure of the ith component in a solution is equal to the mole fraction of that component in the solution times the vapor pressure of pure component i. Use these relationships to relate the mole fraction of component 1 in the equilibrium vapor to its mole fraction in a two-component solution and relate the result to the ideal case of the copolymer composition equation. [Pg.429]

Adhesives. Acryhc emulsion and solution polymers form the basis of a variety of adhesive types. The principal use is in pressure-sensitive adhesives, where a film of a very low T (<—20 " C) acrylic polymer or copolymer is used on the adherent side of tapes, decals, and labels. Acrylics provide a good balance of tack and bond strength with exceptional color stabiUty and resistance to aging (201,202). AcryUcs also find use in numerous types of constmction adhesive formulations and as film-to-film laminating adhesives (qv). [Pg.172]

G-5—G-9 Aromatic Modified Aliphatic Petroleum Resins. Compatibihty with base polymers is an essential aspect of hydrocarbon resins in whatever appHcation they are used. As an example, piperylene—2-methyl-2-butene based resins are substantially inadequate in enhancing the tack of 1,3-butadiene—styrene based random and block copolymers in pressure sensitive adhesive appHcations. The copolymerization of a-methylstyrene with piperylenes effectively enhances the tack properties of styrene—butadiene copolymers and styrene—isoprene copolymers in adhesive appHcations (40,41). Introduction of aromaticity into hydrocarbon resins serves to increase the solubiHty parameter of resins, resulting in improved compatibiHty with base polymers. However, the nature of the aromatic monomer also serves as a handle for molecular weight and softening point control. [Pg.354]

Pressure sensitive adhesives typically employ a polymer, a tackifier, and an oil or solvent. Environmental concerns are moving the PSA industry toward aqueous systems. Polymers employed in PSA systems are butyl mbber, natural mbber (NR), random styrene—butadiene mbber (SBR), and block copolymers. Terpene and aUphatic resins are widely used in butyl mbber and NR-based systems, whereas PSAs based on SBR may require aromatic or aromatic modified aUphatic resins. [Pg.358]

Styrenic block copolymers (SBCs) are also widely used in HMA and PSA appHcations. Most hot melt appHed pressure sensitive adhesives are based on triblock copolymers consisting of SIS or SBS combinations (S = styrene, I = isoprene B = butadiene). Pressure sensitive adhesives typically employ low styrene, high molecular weight SIS polymers while hot melt adhesives usually use higher styrene, lower molecular weight SBCs. Resins compatible with the mid-block of an SBC improves tack properties those compatible with the end blocks control melt viscosity and temperature performance. [Pg.358]

The bulk polycondensation of (10) is normally carried out in evacuated, sealed vessels such as glass ampules or stainless steel Parr reactors, at temperatures between 160 and 220°C for 2—12 d (67). Two monomers with different substituents on each can be cocondensed to yield random copolymers. The by-product sdyl ether is readily removed under reduced pressure, and the polymer purified by precipitation from appropriate solvents. Catalysis of the polycondensation of (10) by phenoxide ion in particular, as well as by other species, has been reported to bring about complete polymerisation in 24—48 h at 150°C (68). Catalysis of the polycondensation of phosphoranimines that are similar to (10), but which yield P—O-substituted polymers (1), has also been described and appears promising for the synthesis of (1) with controlled stmctures (69,70). [Pg.259]

The acryHc weak base resias are syathesized from copolymers similar to those used for the manufacture of weak acid cation-exchange resias. For example, uader appropriate temperature and pressure conditions, a weak acid resia reacts with a polyfuactioaal amine, such as dimethylaminopropylamine [109-55-7] (7) to give a weak base resia with a tertiary amine fuactioaaHty. [Pg.374]

Most commercial processes involve copolymerization of ethylene with the acid comonomer followed by partial neutralization, using appropriate metal compounds. The copolymerization step is best carried out in a weU-stirred autoclave with continuous feeds of all ingredients and the free-radical initiator, under substantially constant environment conditions (22—24). Owing to the relatively high reactivity of the acid comonomer, it is desirable to provide rapid end-over-end mixing, and the comonomer content of the feed is much lower than that of the copolymer product. Temperatures of 150—280°C and pressures well in excess of 100 MPa (1000 atm) are maintained. Modifications on the basic process described above have been described (25,26). When specific properties such as increased stiffness are required, nonrandom copolymers may be preferred. An additional comonomer, however, may be introduced to decrease crystallinity (10,27). [Pg.408]

The chemical iadustry manufactures a large variety of semicrystalline ethylene copolymers containing small amounts of a-olefins. These copolymers are produced ia catalytic polymerisation reactions and have densities lower than those of ethylene homopolymers known as high density polyethylene (HDPE). Ethylene copolymers produced ia catalytic polymerisation reactions are usually described as linear ethylene polymers, to distiaguish them from ethylene polymers containing long branches which are produced ia radical polymerisation reactions at high pressures (see Olefin POLYMERS, LOWDENSITY polyethylene). [Pg.394]

The second type of solution polymerization concept uses mixtures of supercritical ethylene and molten PE as the medium for ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization in supercritical ethylene at high pressure (see Olefin POLYMERS,LOW DENSITY polyethylene) were converted for the catalytic synthesis of LLDPE. Both stirred and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C can also be used for this purpose. Residence times in these reactors are short, from 1 to 5 minutes. Three types of catalysts are used in these processes. The first type includes pseudo-homogeneous Ziegler catalysts. In this case, all catalyst components are introduced into a reactor as hquids or solutions but form soHd catalysts when combined in the reactor. Examples of such catalysts include titanium tetrachloride as well as its mixtures with vanadium oxytrichloride and a trialkyl aluminum compound (53,54). The second type of catalysts are soHd Ziegler catalysts (55). Both of these catalysts produce compositionaHy nonuniform LLDPE resins. Exxon Chemical Company uses a third type of catalysts, metallocene catalysts, in a similar solution process to produce uniformly branched ethylene copolymers with 1-butene and 1-hexene called Exact resins (56). [Pg.400]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

PPO and EOPO copolymers are low hazard—low vapor pressure hquids. Contact with skin, eyes, or inhalation cause irritation. There are no known acute or chronic affects associated with polyols. First aid for contact with polyols involves washing the affected area with water. The flash point of PPO is greater than 93°C. [Pg.355]


See other pages where Pressure copolymer is mentioned: [Pg.420]    [Pg.251]    [Pg.143]    [Pg.192]    [Pg.195]    [Pg.234]    [Pg.279]    [Pg.279]    [Pg.367]    [Pg.379]    [Pg.379]    [Pg.76]    [Pg.355]    [Pg.356]    [Pg.356]    [Pg.376]    [Pg.367]    [Pg.367]    [Pg.371]    [Pg.397]    [Pg.399]    [Pg.400]    [Pg.401]    [Pg.415]    [Pg.431]    [Pg.236]    [Pg.295]    [Pg.354]    [Pg.368]    [Pg.87]   
See also in sourсe #XX -- [ Pg.421 ]




SEARCH



Pressure block copolymer

Pressure-sensitive block copolymer adhesive

Pressure-sensitive vinyl acetate copolymer

© 2024 chempedia.info