Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzoic acid preservatives

Saad, B., Bari, M.F., Saleh, M.I., Ahmad, K., and Talib, M.K. 2005. Simultaneous determination of preservatives (benzoic acid, sorbic acid, methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography. Journal of Chromatography A 1073 393-397. [Pg.306]

The analysis permits the monitoring of forbidden additives, such as the preservatives benzoic acid and sorbic acid. Furthermore, the verification of quality, e.g. by determination of the levels of diglycerides, fi"ee butyric acid and unsaturated fatty acids. It also provides information about the production process, through the levels of e.g. lactose and lactic acid in the butter. [Pg.184]

Much of the benzoic acid produced is converted to sodium benzoate, which is used as a food preservative (as is the acid) and a corrosion inhibi tor. Other important uses of the acid are in the manufacture of alkyd resins, plasticizers, caprolactam, dyestuffs and pharmaceuticals. [Pg.56]

Benzaldehyde is easily oxidised by atmospheric oxygon giving, ultimately, benzoic acid. This auto-oxidation is considerably influenced by catalysts tiiose are considered to react with the unstable peroxide complexes which are the initial products of the oxidation. Catalysts which inhibit or retard auto-oxidation are termed anti-oxidants, and those that accelerate auto-oxidation are called pro-oxidants. Anti-oxidants find important applications in preserving many organic compounds, e.g., acrolein. For benzaldehyde, hydroquinone or catechol (considerably loss than U-1 per cent, is sufficient) are excellent anti-oxidants. [Pg.694]

The activity of the sorbates at a higher pH is one distinct advantage over the two other most commonly used food preservatives, benzoic and propionic acids, because the upper pH limits for activity of these compounds are approximately pH 4.5 and 5.5, respectively. Although the effect of sorbates can be microbiocidal under certain conditions, activity is most often manifested as a microbial growth retardant. [Pg.284]

Benzoic Acid. Ben2oic acid is manufactured from toluene by oxidation in the liquid phase using air and a cobalt catalyst. Typical conditions are 308—790 kPa (30—100 psi) and 130—160°C. The cmde product is purified by distillation, crystallization, or both. Yields are generally >90 mol%, and product purity is generally >99%. Kalama Chemical Company, the largest producer, converts about half of its production to phenol, but most producers consider the most economic process for phenol to be peroxidation of cumene. Other uses of benzoic acid are for the manufacture of benzoyl chloride, of plasticizers such as butyl benzoate, and of sodium benzoate for use in preservatives. In Italy, Snia Viscosa uses benzoic acid as raw material for the production of caprolactam, and subsequendy nylon-6, by the sequence shown below. [Pg.191]

In the United States all other processes have been completely phased out and virtually all benzoic acid is manufactured by the continuous hquid-phase air oxidation of toluene. In the late 1950s and the early 1960s both Dow Chemical and Snia Viscosa constmcted faciUties for Hquid-phase toluene oxidation because of large requirements for benzoic acid in the production of phenol and caprolactam. Benzoic acid, its salts, and esters are very useful and find appHcation in medicinals, food and industrial preservatives, cosmetics, resins, plasticizers, dyestuffs, and fibers. [Pg.52]

Sodium and potassium benzoate are employed in a wide range of preservative appHcations because they provide an effective combination of antimicrobial action, low cost, and safety. Although sodium and potassium benzoate are the preservatives offered in the marketplace, the actual active ingredient being sold is free (or undissociated) benzoic acid. The benzoate ion has essentially no antimicrobial properties. Since it is the undissociated (free) benzoic acid that provides the antimicrobial action, sodium benzoate and potassium benzoate are recommended for use in appHcation areas where the pH is at 4.5 or lower (Table 8). [Pg.56]

Sodium and potassium benzoate are substances that may be added direcdy to human food and are affirmed as GRAS (33—35). Benzoic acid and sodium and potassium benzoate are now used as preservatives in such foods as sauces, pickles, cider, fmit juices, wine coolers, symps and concentrates, mincemeat and other acidic pie fillings, margarine, egg powder, fish (as a brine dip component), bottled carbonated beverages, and fmit preserves, jams, and jellies. The popularity of diet soft drinks has led to increased demand for both benzoate salts. [Pg.56]

Sodium benzoate is also finding increasing appHcation as a corrosion inhibitor. It is incorporated into paper wrapping materials for the prevention of mst or corrosion in the production of such diverse items as razor blades, engine parts, bearings, etc. It is also used in the automotive industry as a corrosion inhibitor in engine cooling systems (at 1.5%), mainly in Europe and Japan. Unlike in its appHcation as a preservative where free benzoic acid is required to provide antimicrobial action, it appears to be the benzoate ion that provides the corrosion protection. [Pg.56]

Perfumes, Flavors, Cosmetics, and Soap. Many naturally occurring esters in essential oils and some synthetic esters are important fragrance and flavor compounds (61,62). They are used in perfumes, flavors, cosmetics, soaps, detergents, and air fresheners. Benzyl, butyl, ethyl, methyl, and phenyl esters of benzoic acid are used as flavors, perfumes, and food preservatives. Glyceryl 4-aminobenzoate [136-44-7] and 2-ethyUiexyl 4-dimethylaminobenzoate [21245-02-3] are used in cosmetic sunscreen preparations. Alkyl esters of 4-hydroxybenzoic acid, called parabens, have been used under various names for fungus infections of the skin, and as preservatives in lotions and creams (101). Soap and cosmetic fragrances use large amounts of amyl and benzyl saHcylate. Benzyl saHcylate [118-58-1] is also used in deodorant sprays. 2-Ethylhexyl saHcylate [118-60-5] and 2-ethylhexyl 4-methoxycinnamate [5466-77-3] are used in sunscreen formulations (102). [Pg.396]

A platform was being constructed from one storage tank to another, without the workers knowing that mixture of benzoic acid and air in the open storage tank could explode. DSM is the largest European producer of benzoic acid which is used in a range of applications from a pla.sttcizcf to food preservative. DSM s capacity here is 440 million lb per year. [Pg.260]

Though much benzoic acid gets used as a mordant in calico printing, it also serves to season tobacco, preserve food, make dentifrices, and kill fungus. Furthermore it is a precursor for caprolactam, phenol, and tereph-thalic acid. [Pg.286]

Phenol was the first commercial antiseptic its introduction into hospitals in the 1870s led to a dramatic decrease in deaths from postoperative infections. Its use for this purpose has long since been abandoned because phenol burns exposed tissue, but many modern antiseptics are phenol derivatives. Toluene has largely replaced benzene as a solvent because it is much less toxic. Oxidation of toluene in the body gives benzoic acid, which is readily eliminated and has none of the toxic properties of the oxidation products of benzene. Indeed, benzoic acid or its sodium salt (Na+, C6H5COO ions) is widely used as a preservative in foods and beverages, including fruit juices and soft drinks. [Pg.589]

Methyl groups attached to benzene rings can be reacted with oxygen to produce aromatic carboxylic acids. Benzoic acid, the parent aromatic acid, finds wide use as a food preservative and in metal corrosion inhibitors. Aspirin and saccharin are derivatives of benzoic acid. [Pg.78]

This compound is a widely used preservative as the acid or its potassium salt. The pKa is 4.8 and, as with benzoic acid, activity decreases with increasing pH and ionization. It is most effective at pH 4 or below. Pharmaceutical products such as gums, mucilages and syrups are usefully preserved with this agent. [Pg.212]

Composition of Emulsion, The prototype oil/water emulsion described in Table I contained ingredients typical of a large number of cosmetic products, although simplified somewhat to avoid analytical problems. The aqueous phase contained sodium lauryl sulfate (SLS) as emulsifier, 0,2% (19 n ) DEA as precursor to NDEIA and 0,1% benzoic acid as preservative. [Pg.150]

The preservatives I select for my formulations is much more limited than the ten listed in the above reference. The products which I develop for a company with natural ingredients image, restricted me to the para hydroxy benzoic acids, benzyl alcohol and phenoxyethanol. I have been allowed to use Myavert C during the last two years due to increase in customer complaints which was assumed to be due to the high levels of phenoxyethanol and benzyl alcohol used hence allergic reaction to the... [Pg.156]

The incorporation of certain excipients in products is deemed to be undesirable. Examples are the inclusion of mercurial preservatives, the inclusion of benzyl alcohol in parenteral products for use in children, the use of benzoic acid esters in injections, and the inclusion of sulfites and metabisulfites in products in general. If it is intended to use any of these materials, then a full justification will be required. [Pg.650]

Goger and Gokcen [19] developed a quantitative method for the determination of miconazole in cream formulations that contain benzoic acid as preservative by second order derivative spectrophotometry. The procedure was based on the linear relationship in the range 100—500 pg/mL between the drug concentration and the second-derivative amplitudes at 276 nm. Results of the recovery experiments performed on various amounts of benzoic acid and the determination of miconazole in cream confirmed the applicability of the method to complex formulations. [Pg.39]

There is a recent trend towards simultaneous CE separations of several classes of food additives. This has so far been applied to soft drinks and preserved fruits, but could also be used for other food products. An MEKC method was published (Lin et al., 2000) for simultaneous separation of intense sweeteners (dulcin, aspartame, saccharin and acesulfame K) and some preservatives (sorbic and benzoic acids, sodium dehydroacetate, methyl-, ethyl-, propyl- and isopropyl- p-hydroxybenzoates) in preserved fruits. Ion pair extraction and SPE cleanup were used prior to CE analysis. The average recovery of these various additives was 90% with good within-laboratory reproducibility of results. Another procedure was described by Frazier et al. (2000b) for separation of intense sweeteners, preservatives and colours as well as caffeine and caramel in soft drinks. Using the MEKC mode, separation was obtained in 15 min. The aqueous phase was 20 mM carbonate buffer at pH 9.5 and the micellar phase was 62 mM sodium dodecyl sulphate. A diode array detector was used for quantification in the range 190-600 nm, and limits of quantification of 0.01 mg/1 per analyte were reported. The authors observed that their procedure requires further validation for quantitative analysis. [Pg.125]

Benzoic acid, a common food preservative, may be a suitable substrate to achieve biostimulation. It is a relatively inexpensive, harmless aromatic compound that has been previously used in analogue enrichment1 schemes to enhance biodegradation of the aromatic herbicide, 2,3,6-trichlorobenzoic acid (2,3,6-TBA) [336]. Benzoate ion is also an intermediate in the toluene pathway and it can induce related enzymes involved in the degradation of toluene and m-and p-xylenes [336]. In addition, the anionic nature of benzoic acid would minimize its retardation and facilitate its distribution when injected into an... [Pg.377]

Determination of preservatives (sorbic and benzoic acid, parabens) in food products Determination of phenylurea herbicide residues in vegetables and vegetable processed food Separation of flavonoids from extracts of Adinandra nitida leaves... [Pg.465]

The sodinm salt of benzoic acid, sodinm benzoate, is a very commonly employed preservative. Let s pause here for a moment to re-emphasize an important point biological activity is a sensitive fnnction of chemical structure. Benzene, the parent molecule of benzoic acid, is a serions toxin in contrast, the sodium salt of benzoic acid is sufficiently safe to be added, in modest amounts, to a great many foodstnffs. The addition of the carboxyl gronp to benzene has created a far safer molecnle. [Pg.86]

Hexanedioic acid is used in the manufacture of nylon-6, 6. Esters of benzoic acid are used in perfumery. Sodium benzoate is used as a food preservative. Higher fatty acids are used for the manufacture of soaps and detergents. [Pg.107]

If 20 ml of aqueous buffer phase were extracted with 20 ml of chloroform there would be 1 part of the preservative in the aqueous phase to 0.158 parts in the chloroform layer. Since 60 ml of chloroform are used in the extraction 1 part of the benzoic acid will remain in the aqueous phase while there will be 0.474 parts in the chloroform layer. [Pg.30]

Benzoic acid possesses anti-bacterial and anti-fimgal properties. At a concentration of 0.1%, benzoic acid is a moderately effective preservative providing that the pH of the formulation (medicines, cosmetics, or foods) does not exceed 5.0. As ointment, benzoic acid is used for the treatment of fungal infections [3,5]. [Pg.5]


See other pages where Benzoic acid preservatives is mentioned: [Pg.517]    [Pg.64]    [Pg.1255]    [Pg.288]    [Pg.517]    [Pg.64]    [Pg.1255]    [Pg.288]    [Pg.180]    [Pg.427]    [Pg.300]    [Pg.126]    [Pg.126]    [Pg.127]    [Pg.212]    [Pg.148]    [Pg.159]    [Pg.139]    [Pg.117]    [Pg.139]    [Pg.258]    [Pg.271]    [Pg.274]    [Pg.48]   
See also in sourсe #XX -- [ Pg.432 ]

See also in sourсe #XX -- [ Pg.278 ]




SEARCH



Acidic preservatives

Preservatives acids

Preservatives hydroxy benzoic acid esters

© 2024 chempedia.info