Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precipitator filter

Method 1. Treat 2 0 g. of the mixture of amines with 40 ml. of 10 per cent, sodium hydroxide solution and add 4 g. (3 ml.) of benzenesulphonyl chloi de (or 4 g. of p-toluenesulphonyl chloride) in small portions. Warm on a water bath to complete the reaction. Acidify the alkaline solution with dilute hydrochloric acid when the sulphonamides of the primary and secondary amines are precipitated. Filter off the solid and wash it with a little cold water the tertiary amine will be present in the filtrate. To convert any disulphOnamide that may have been formed from the primary amine into the sulphonamide, boil the solid under reflux with 2 0 g. of sodium dissolved in 40 ml. of absolute ethyl alcohol for 30 minutes. Dilute with a little water and distil off the alcohol filter off the precipitate of the sulphonamide of the secondary amine. Acidify the filtrate with dilute hydrochloric acid to precipitate the derivative of the primary amine. Recrystallise the respective derivatives from alcohol or from dilute alcohol, and identify them inter alia by a determination of the m.p. [Pg.651]

Meihylamine hydrochloride method. Place 100 g. of 24 per cent, methyl-amine solution (6) in a tared 500 ml. flask and add concentrated hydrochloric acid (about 78 ml.) until the solution is acid to methyl red. Add water to bring the total weight to 250 g., then introduce lSO g. of urea, and boil the solution gently under reflux for two and three-quarter hours, and then vigorously for 15 minutes. Cool the solution to room temperature, dissolve 55 g. of 95 per cent, sodium nitrite in it, and cool to 0°. Prepare a mixture of 300 g. of crushed ice and 50 g. of concentrated sulphuric acid in a 1500 ml. beaker surrounded by a bath of ice and salt, and add the cold methylurea - nitrite solution slowly and with mechanical stirring and at such a rate (about 1 hour) that the temperature does not rise above 0°. It is recommended that the stem of the funnel containii the methylurea - nitrite solution dip below the surface of the acid solution. The nitrosomethylurea rises to the surface as a crystalline foamy precipitate. Filter at once at the pump, and drain well. Stir the crystals into a paste with about 50 ml. of cold water, suck as dry as possible, and dry in a vacuum desiccator to constant weight. The yield is 55 g. (5). [Pg.969]

Handling of alumina and coke presents dusting problems. Hoods and exhaust systems collect the dust, which is then separated from the exhaust air either by cyclones, electrostatic precipitators, filter bags, or a combination of these methods, and recycled to the process (see Air pollution control PffiTHODS). [Pg.105]

The hexahydrate of aluminum chloride is a deUquescent, crystalline soHd soluble in water and alcohol and usually made by dissolving aluminum hydroxide [21645-51 -2] A1(0H)2, ia concentrated hydrochloric acid. When the acid is depleted, the solution is cooled to 0 °C and gaseous hydrogen chloride is introduced. Crystalline aluminum chloride hexahydrate, AIQ 6H20, is precipitated, filtered from the Hquor, washed with ethyl ether, and dried. [Pg.148]

Precipitation. Filtered overflow from the first clarifier, 20% BaS solution, is fed to an agitated tank where, on tight control, carbonate values are added in slight excess of stoichiometric requirements. The excess carbonate suppresses soluble barium which would otherwise later precipitate in equipment. [Pg.478]

The mixture is allowed to stand for a week (Note 2) and the precipitate filtered, washed with cold water until free of chlorides, and dried at 40-50°. The yield is 246-315 g. The product... [Pg.82]

Plant failure Process plant - emergency venting Extraction/collection plant (cyclones, precipitators, filters, scrubbers)... [Pg.503]

Adds.—A free acid may be at once identified by its solubility in a holution of sodium carbonate and by being reprecipitated by concentrated hydrochloric acid. If a metal has been dis-coveied in the piehminary examination, a careful examination must be made for an organic acid. As the substance is insoluble ill water the metal will probably not be an alkali metal. Boil the substance with sodium carbonate solution. The sodium salt of the acid passes into solution and the metallic carbonate IS precipitated. Filter boil the filtrate with a slight excess of nitric acid, add excess of ammonia and boil until neutral, tests may then be applied in order to identify one of the common acids and the ni.p. determined but beyond this it is impossible to carry the investigation in a limited time. [Pg.337]

The soluiiou of silver nitrate is acidified with dilute uitric scid, boiled so 49 to decompose an v ailvov sulphite that might have been formed, aud the precipitate filtered, washed, etc. [Pg.409]

The portion of the mixture of crude nitrosochlorides which was not dissolved by chloroform consists of crude yS-nitrosochloride. This is dissolved by shaking with ten times its weight of chloroform. The solution is then filtered and methyl alcohol added and the precipitate filtered off, washed with ether, and dried. The dried compound is dissolved in ether and on evaporation of the solvent pure )8-nitrosochloride separates. This body melts at 100°. [Pg.61]

A) A solution of (SMI (320 mg) in trifluoroacetic acid (7 ml) was kept under nitrogen at room temperature for 15 minutes. Ether (100 ml) was added and the precipitate filtered, washed thoroughly with ether and dried. This material (280 mg) was added to concentrated sulfuric acid (20 ml), cooled at -20°C. The solution was kept in the dry ice-acetone bath at -20°C for 75 minutes. The sulfuric acid solution was poured into ice water (80 ml). The precipitate was centrifuged, resuspended in ice water (30 ml) and 4N sodium hydroxide was added until a clear solution was obtained. After reacidification to pH 4 with dilute sulfuric acid, the precipitate formed was centrifuged, washed twice with ice water and dried. Yield 155 mg. Chromatograph of DEAE Sephadex (with ammonium carbonate buffer) yielded the desired octa-peptide sulfate ester 30 mg. [Pg.1377]

The choice of the filtering medium will be controlled by the nature of the precipitate (filter paper is especially suitable for gelatinous precipitates) and also by the question of cost. The limitations of the various filtering media are given in the account which follows. [Pg.115]

Graham coined the term "colloid" to describe suspensions of small particles in a liquid.(J ) Such particles are generally considered to be from 1 to 5000 nm in diameter and are not easily precipitated, filtered, or observed by ordinary optical microscopes. The topic of this paper is metallic colloidal particles, often called metal sols, with special emphasis on non-aqueous media. Some history of gold sols is appropriate. [Pg.250]

Acetanilide (13.5 g), (substituted) aromatic bromide (25 g), potassium carbonate (13.2 g), and copper iodide (1.9 g) were heated (190°C) and stirred overnight. After cooling to room temperature toluene was added and the precipitate filtered. The solution was concentrated and the excess of bromide removed by distillation under reduced pressure. The residue was dissolved in ethanol (200 mL), potassium hydroxide (10.3 g) was added, and the mixture refluxed overnight. Ethanol was evaporated, the residue dissolved in dichloromethane, and washed with brine. The organic layer was dried over MgS04 and concentrated to obtain the crude diphenylamine. [Pg.545]

To a solution of oxalic chloride (5 g) in dichloromethane, a solution of diphenyl amine (5 g) in dichloromethane was added dropwise and refluxed for 30 min. The solution was concentrated (50%) and aluminum trichloride (8 g) added in portions. The mixture was refluxed for 45 min and the solvent evaporated. To this residue hydrochloric acid in ice water (1 M) was added and the red-colored precipitate filtered. The precipitate was dissolved in potassium hydroxide (10% in water), refluxed overnight, and poured into hydrochloric acid in ice water (5 M). The yellow acridine-9-carboxylic acid was filtered, washed with water, and dried. [Pg.546]

The steam power plant should become another site for an exciting project enabling a 2-fold reduction in the degree of flue gas cleaning while cutting the electric power consumption by a factor of 2 to 3. The new process that applies pulsed voltage to the precipitation filters has been successfully introduced at several other plants in Ukraine. [Pg.32]

To 16.3 g Na in 210 ml ethanol add 93 g ethyl-acetoacetate (ethyl-3-oxo-butanoate), heat to boil and add dropwise 92 g (II) over 20 minutes. Stir and reflux five hours and cool to precipitate. Filter, wash with ethanol and dissolve precipitate in 800 ml water. Cool to 0° C and slowly add 80 ml ice cold concentrated HC1 to precipitate. Filter, wash with water and ligroin to get about 108 g 6-carbethoxy-4,5-dihydro-olivetol (ID) (reciystallize from petroleum ether). To 104 g (III) in 260 ml glacial acetic acid at room temperature with good stirring, add dropwise over one hour 69 ml Bromine. Heat-four to five hours at 60° C, cool and add 300 ml water and let stand twelve hours. Oil separates which will precipitate on agitation and... [Pg.40]


See other pages where Precipitator filter is mentioned: [Pg.245]    [Pg.326]    [Pg.747]    [Pg.748]    [Pg.830]    [Pg.244]    [Pg.525]    [Pg.499]    [Pg.327]    [Pg.270]    [Pg.155]    [Pg.203]    [Pg.135]    [Pg.336]    [Pg.742]    [Pg.974]    [Pg.1568]    [Pg.355]    [Pg.458]    [Pg.458]    [Pg.336]    [Pg.326]    [Pg.748]    [Pg.830]    [Pg.32]    [Pg.320]    [Pg.42]    [Pg.63]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Filtering precipitate

Filtering precipitate

Filters dissolving iron precipitate from

Precipitate stainless steel filters

Precipitation from solution, filter media

© 2024 chempedia.info