Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precipitation applications, generally

Phosphate is widely used as a chemical stabilization agent for MSW combustion residues in Japan and North America and is under consideration for use in parts of Europe. The application of this technology to MSW ashes generally parallels its application to contaminated soils. Metal phosphates (notably Cd, Cu, Pb and Zn) frequently have wide pH distribution, pH-pE predominance, and redox stability within complex ash pore water systems. Stabilization mechanisms identified in other contaminated systems (e.g., soils), involving a combination of sorption, heterogeneous nucleation, and surface precipitation, or solution-phase precipitation are generally observed in ash systems. [Pg.465]

Because of their important application value, much research and development on the preparation technologies of ultrafine powders has been carried out in the last twenty years and more, and hundreds of preparation methods have been proposed. Since they are not the major topic of this book, neither a description of the classification of the methods nor an introduction to the details of the various methods will be covered here. On the other hand, reaction-precipitation methods generally have a number of advantages such as lower cost, moderate operating conditions, lower equipment requirements, convenience of operation, and normally yield good-performing products etc. thus they occupy an important position among the various methods. [Pg.269]

Method 6 is another rather special case, which, however, finds extensive commercial application in certain lines. At first sight it may be thought to be no more than an application of precipitation but precipitation is generally brought about by a reaction between the precipitating agent and substance in solution to form a new compound. Rather Method 4 is intended to apply to cases such as are represented by separation of compounds by immiscible solvents, the compound, or the impurity as the case may be, being soluble in both solvents, while the body to be separated is soluble in only one. Method 6, however, applies to many cases where the separated body comes out in... [Pg.407]

Some examples of applications of precipitate flotation, using both inorganic and organic collector precipitates, are summarized in Tables 1 and 2. Organic collector precipitates are generally much more selective in the separation of metal ions than inorganic collector precipitates. [Pg.1439]

Pretreatment For most membrane applications, particularly for RO and NF, pretreatment of the feed is essential. If pretreatment is inadequate, success will be transient. For most applications, pretreatment is location specific. Well water is easier to treat than surface water and that is particularly true for sea wells. A reducing (anaerobic) environment is preferred. If heavy metals are present in the feed even in small amounts, they may catalyze membrane degradation. If surface sources are treated, chlorination followed by thorough dechlorination is required for high-performance membranes [Riley in Baker et al., op. cit., p. 5-29]. It is normal to adjust pH and add antisealants to prevent deposition of carbonates and siillates on the membrane. Iron can be a major problem, and equipment selection to avoid iron contamination is required. Freshly precipitated iron oxide fouls membranes and reqiiires an expensive cleaning procedure to remove. Humic acid is another foulant, and if it is present, conventional flocculation and filtration are normally used to remove it. The same treatment is appropriate for other colloidal materials. Ultrafiltration or microfiltration are excellent pretreatments, but in general they are... [Pg.2037]

For electrical insulation china clay is commonly employed whilst various calcium carbonates (whiting, ground limestone, precipitated calcium carbonate, and coated calcium carbonate) are used for general purpose work. Also occasionally employed are talc, light magnesium carbonate, barytes (barium sulphate) and the silicas and silicates. For flooring applications asbestos has been an important filler. The effect of fillers on some properties of plasticised PVC are shown in Figure 12.21 (a-d). [Pg.338]

Fillers. They are generally added to reinforce NBR adhesives. However, fillers can be added to promote tack, to increase the storage life, to improve heat resistance or to reduce cost. The most common fillers are carbon blacks. Precipitated silica can be used in applications where black colour is not acceptable, but excessive amounts tend to reduce adhesion. Titanium dioxide can be used to impart whiteness, improves tack and extend storage life. [Pg.658]

Major problems inherent in general applications of RO systems have to do with (1) the presence of particulate and colloidal matter in feed water, (2) precipitation of soluble salts, and (3) physical and chemical makeup of the feed water. All RO membranes can become clogged, some more readily than others. This problem is most severe for spiral-wound and hollow-fiber modules, especially when submicron and colloidal particles enter the unit (larger particulate matter can be easily removed by standard filtration methods). A similar problem is the occurrence of concentration-polarization, previously discussed for ED processes. Concentration-polarization is caused by an accumulation of solute on or near the membrane surface and results in lower flux and reduced salt rejection. [Pg.362]

Electrostatic precipitation is one of the fundamental means of separating solid or liquid particles from gas streams. This technique has been utilized in numerous applications, including industrial gas-cleaning systems, air cleaning in general ventilation systems, and household room air cleaners. [Pg.1211]

In general, electrostatic precipitators have been shown to best suit those applications where high gas flows must be handled and relatively high efficiency is required. It must also be emphasized that the use of electrostatic precipitators is limited to those applications where the explosion risks are minimal. [Pg.1212]

The last definition has widespread use in the volumetric analysis of solutions. If a fixed amount of reagent is present in a solution, it can be diluted to any desired normality by application of the general dilution formula V,N, = V N. Here, subscripts 1 and 2 refer to the initial solution and the final (diluted) solution, respectively V denotes the solution volume (in milliliters) and N the solution normality. The product VjN, expresses the amount of the reagent in gram-milliequivalents present in a volume V, ml of a solution of normality N,. Numerically, it represents the volume of a one normal (IN) solution chemically equivalent to the original solution of volume V, and of normality N,. The same equation V N, = V N is also applicable in a different context, in problems involving acid-base neutralization, oxidation-reduction, precipitation, or other types of titration reactions. The justification for this formula relies on the fact that substances always react in titrations, in chemically equivalent amounts. [Pg.330]

Application of an excessive amount of ammonia solution in the precipitation of tantalum and niobium hydroxides from strip solutions usually ensures good quality of the products. Nevertheless, the method has two general problems. First, hydroxides containing low levels of fluorine contamination... [Pg.298]

That some silver does dissolve to form Ag+ can be verified experimentally by adding a little KI to the solution. Silver iodide has an even lower solubility than does silver chloride. The experiment shows that the amount of silver that dissolves is sufficient to cause a visible precipitate of Agl but not of AgCl. This places the Ag+ ion concentration below 10-10 M but above 10-17 M. Either of these concentrations is so small that we can consider our prediction for the standard state to be applicable here too—silver metal does not dissolve appreciably in 1 M HC1. In general, the question of whether a prediction based upon the standard state will apply to other conditions depends upon how large is the magnitude of °. If ° for the overall reaction is only one- or two-tenths volt (either positive or negative), then deviations from standard conditions may invalidate predictions that do not take into account these deviations. [Pg.214]

No universal rules can be given which are applicable to all cases of precipitation, but, by the intelligent application of the principles enumerated in the foregoing paragraphs, a number of fairly general rules may be stated ... [Pg.424]

While the model was in general agreement with the limited experimental data published on bulk PVC particle size distribution, there is still no generally applicable theory describing particle growth and flocculation in the presences of mechanical agitation for precipitation polymerizations. [Pg.272]

Mixing the two solutions will produce 2.50 X 10 mol of Fe (0H)3 precipitate, which is 2.67 g. The mixed solution contains Na cations and Cl anions, too, but we can ignore these spectator ions in our calculations. Notice that this precipitation reaction is treated just like other limiting reactant problems. Examples and further illustrate the application of general stoichiometric principles to precipitation reactions. [Pg.230]

Aqueous electrolytes proposed in the literature for cathodic electrodeposition of lead selenide are generally composed of dissolved selenous anhydride and a lead salt, such as nitrate or acetate. Polycrystalline PbSe films have been prepared by conventional electrosynthesis from ordinary acidic solutions of this kind on polycrystalline Pt, Au, Ti, and Sn02/glass electrodes. The main problem with these applications was the PbSe dendritic growth. Better controlled deposition has been achieved by using EDTA in order to prevent PbSeOs precipitation, and also acetic acid to prevent lead salt hydrolysis. [Pg.125]

The most intensive development of the nanoparticle area concerns the synthesis of metal particles for applications in physics or in micro/nano-electronics generally. Besides the use of physical techniques such as atom evaporation, synthetic techniques based on salt reduction or compound precipitation (oxides, sulfides, selenides, etc.) have been developed, and associated, in general, to a kinetic control of the reaction using high temperatures, slow addition of reactants, or use of micelles as nanoreactors [15-20]. Organometallic compounds have also previously been used as material precursors in high temperature decomposition processes, for example in chemical vapor deposition [21]. Metal carbonyls have been widely used as precursors of metals either in the gas phase (OMCVD for the deposition of films or nanoparticles) or in solution for the synthesis after thermal treatment [22], UV irradiation or sonolysis [23,24] of fine powders or metal nanoparticles. [Pg.234]

Applications The majority of SFE applications involves the extraction of dry solid matrices. Supercritical fluid extraction has demonstrated great utility for the extraction of organic analytes from a wide variety of solid matrices. The combination of fast extractions and easy solvent evaporation has resulted in numerous applications for SFE. Important areas of analytical SFE are environmental analysis (41 %), food analysis (38 %) and polymer characterisation (11%) [292], Determination of additives in polymers is considered attractive by SFE because (i) the SCF can more quickly permeate throughout the polymer matrix compared to conventional solvents, resulting in a rapid extraction (ii) the polymer matrix is (generally) not soluble in SCFs, so that polymer dissolution and subsequent precipitation are not necessary and (iii) organic solvents are not required, or are used only in very small quantities, reducing preparation time and disposal costs [359]. [Pg.95]

In an industrial application dissolution/reprecipitation technology is used to separate and recover nylon from carpet waste [636]. Carpets are generally composed of three primary polymer components, namely polypropylene (backing), SBR latex (binding) and nylon (face fibres), and calcium carbonate filler. The process involves selective dissolution of nylon (typically constituting more than 50wt% of carpet polymer mass) with an 88 wt % liquid formic acid solution and recovery of nylon powder with scCC>2 antisolvent precipitation at high pressure. Papaspyrides and Kartalis [637] used dimethylsulfoxide as a solvent for PA6 and formic acid for PA6.6, and methylethylketone as the nonsolvent for both polymers. [Pg.152]


See other pages where Precipitation applications, generally is mentioned: [Pg.195]    [Pg.425]    [Pg.8]    [Pg.1029]    [Pg.484]    [Pg.352]    [Pg.442]    [Pg.501]    [Pg.328]    [Pg.247]    [Pg.1610]    [Pg.368]    [Pg.391]    [Pg.143]    [Pg.54]    [Pg.255]    [Pg.1232]    [Pg.69]    [Pg.2]    [Pg.369]    [Pg.1240]    [Pg.254]    [Pg.460]    [Pg.6]    [Pg.21]    [Pg.143]    [Pg.366]    [Pg.587]    [Pg.341]    [Pg.425]    [Pg.345]   
See also in sourсe #XX -- [ Pg.17 , Pg.20 ]




SEARCH



Applications general

General Applicability

Precipitation, Applications

© 2024 chempedia.info