Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentiostatic characteristic

Typical anodization curves of silicon electrodes in aqueous electrolytes are shown in Fig. 5.1 [Pa9]. The oxidation can be performed under potential control or under current control. For the potentiostatic case the current density in the first few seconds of anodization is only limited by the electrolyte conductivity [Ba2]. In this respect the oxide formation in this time interval is not truly under potentiostatic control, which may cause irreproducible results [Ba7]. In aqueous electrolytes of low resistivity the potentiostatic characteristic shows a sharp current peak when the potential is switched to a positive value at t=0. After this first current peak a second broader one is observed for potentials of 16 V and higher, as shown in Fig. 5.1a. The first sharp peak due to anodic oxidation is also observed in low concentrated HF, as shown in Fig. 4.14. In order to avoid the initial current peak, the oxidation can be performed under potentiodynamic conditions (V/f =const), as shown in Fig. 5.1b. In this case the current increases slowly near t=0, but shows a pronounced first maximum at a constant bias of about 19 V, independently of scan rate. The charge consumed between t=0 and this first maximum is in the order of 0.2 mAs cnT2. After this first maximum several other maxima at different bias are observed. [Pg.79]

Potentiodynamic polarisation The characteristics of passive/active conditions for metals can be readily defined using this technique ". Details for laboratory application can be found in ASTM Standard G5 (latest revision). Application in plant is easily performed as portable equipment (potentiostat) is available from several manufacturers, with some models incorporating built-in computer facilities. [Pg.1138]

Potentiostatic conditions are realized with electronic potentiostats. The potential of the working electrode is monitored continuously with the aid of a reference electrode. When the potential departs from a set value, the potentiostat will adjust the current flow in the cell automatically so as to restore the original value of potential. Important characteristics of potentiostats are their rise time and the maximum currents which they can deliver to the cell. Modem high-quality potentiostats have rise times of 10 to 10 s. [Pg.197]

An EG G PARC 273 Potentiostat/Galvanostat was used in both the electrolysis and the CV experiments, coupled with an HP 7044B X/Y recorder. A Solartron 1255 HF Frequency Response Analyzer and a Solartron 1286 Electrochemical Interface were employed for the a.c. impedance measurements, using frequencies from 0.1 to 65 kHz and a 10 mV a.c. amplitude (effective) at either the open circuit potential (OCP) or at various applied potentials. As the RE can introduce a time delay at high frequencies, observed as a phase shift owing to its resistance and capacitance characteristics, an additional Pt wire electrode was placed in the cell and was connected via a 6.8 pF capacitor to the RE lead [32-34]. [Pg.74]

A polarizable Interface is represented by a (polarizable) electrode where a potential difference across the double layer is applied externally, i.e., by applying between the electrode and a reference electrode using a potentiostat. At a reversible interface the change in electrostatic potential across the double layer results from a chemical interaction of solutes (potential determining species) with the solid. The characteristics of the two types of double layers are very similar and they differ primarily in the manner in which the potential difference across the interface is established. [Pg.148]

Dijksma etal. [178] have described the formation of SAMs of thioctic acid on pc-Au electrodes in phosphate buffer of pH = 7.4. It has been found that potentiostatically formed monolayers of this acid have better characteristics than those generated under the open-circuit conditions. Also, a new strategy toward fast immobilization of thioctic SAM has been described [179]. It involved placing the known quantity of thioctic acid solution on a gold electrode surface. This way, one obtained modified electrodes that can be used in the preparation of sensors. [Pg.863]

The reactant gas must diffuse through the electrode structure which contains air (02, N2) and any products of reaction (CO2, N02, NO, H2O vapor, etc.). Response characteristics are dependent on electrode material, Teflon content, electrode porosity, thickness and diffusion/reaction kinetics of the reactant gas on the catalytic surface. By optimizing catalytic activity for a given reaction and controlling the potentiostatic voltage on the sensing electrode, the concentration of reactant gas can be maintained at essentially zero at the electrode/electrolyte interface. All reactant species arriving at the electrode/electrolyte interface will be readily reacted. Under these conditions, the rate of diffusion is proportional to C, where... [Pg.554]

It should be anticipated that there will not be a smooth transition from these idealized, simple systems into the real world. Some precautions and pitfalls have been cited, but usually in a parenthetical manner that lacked proper emphasis. The systems selected to illustrate the general principles of potentiostatic control have shown what can be expected under ideal conditions, but real systems have additional parameters that may tilt the balance from graceful control to chaos. Cell design is of paramount importance, and a guide to transfer characteristics of cells is included in the bibliography. To bring the information in this chapter effectively into use, it is necessary to acknowledge the role that cells play... [Pg.231]

The control led-potential three-electrode apparatus can be conveniently used to discuss the matching of the cell, the sample, and the instrument. Controlled-potential experiments are common and the following discussion is relevant to many electroanalytical techniques. The operation of a potentiostat is discussed in Chapters 6 and 7, and the reader should be familiar with the characteristics of potentiostats. In short, feedback of an error signal to the input of the potentiostat maintains control of the potential difference between the working and reference electrodes (Chap. 6). [Pg.268]

Electrode geometry in controlled-potential electrolysis. When fast response and accuracy of potential control are desired, considerable attention must be paid to the design of the cell-potentiostat system, and several papers have discussed the critical parameters and made recommendations for optimum cell design.8"11 In general, to achieve stability and an optimum potentiostat rise time for a fast potential change, the total cell impedance should be as small as possible, and the uncompensated resistance should be adjusted to an optimum (nonzero) value that depends on the characteristics of the cell and potentiostat.9,12 The electrode geometry also should provide for a low-resistance reference electrode and a uniform current distribution over the surface of the... [Pg.254]

These remarks must be balanced by some characteristic difficulties of using the electrochemical path. Sometimes, and in spite of tight potential control, two or more reactions take place at the same time and give not one product but a mixture. Correspondingly, overoxidation may occur the intended oxidation may continue to a further step by means of a chemical driving force outside the control of the potentiostat. [Pg.89]

Under -> open-circuit conditions a possible passivation depends seriously on the environment, i.e., the pH of the solution and the potential of the redox system which is present within the electrolyte and its kinetics. For electrochemical studies redox systems are replaced by a -> potentiostat. Thus one may study the passivating properties of the metal independently of the thermodynamic or kinetic properties of the redox system. However, if a metal is passivated in a solution at open-circuit conditions the cathodic current density of the redox system has to exceed the maximum anodic dissolution current density of the metal to shift the electrode potential into the passive range (Fig. 1 of the next entry (- passivation potential)). In the case of iron, concentrated nitric acid will passivate the metal surface whereas diluted nitric acid does not passivate. However, diluted nitric acid may sustain passivity if the metal has been passivated before by other means. Thus redox systems may induce or only maintain passivity depending on their electrode potential and the kinetics of their reduction. In consequence, it depends on the characteristics of metal disso-... [Pg.483]


See other pages where Potentiostatic characteristic is mentioned: [Pg.95]    [Pg.208]    [Pg.304]    [Pg.104]    [Pg.198]    [Pg.101]    [Pg.252]    [Pg.109]    [Pg.596]    [Pg.13]    [Pg.12]    [Pg.42]    [Pg.862]    [Pg.960]    [Pg.58]    [Pg.200]    [Pg.202]    [Pg.271]    [Pg.391]    [Pg.250]    [Pg.103]    [Pg.160]    [Pg.119]    [Pg.193]    [Pg.115]    [Pg.511]    [Pg.101]    [Pg.142]    [Pg.365]    [Pg.116]    [Pg.139]    [Pg.191]    [Pg.227]    [Pg.242]    [Pg.118]    [Pg.249]    [Pg.273]   
See also in sourсe #XX -- [ Pg.41 , Pg.50 , Pg.60 , Pg.80 ]




SEARCH



Potentiostat

Potentiostatic

Potentiostats

© 2024 chempedia.info