Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentiometry limits

When first developed, potentiometry was restricted to redox equilibria at metallic electrodes, limiting its application to a few ions. In 1906, Cremer discovered that a potential difference exists between the two sides of a thin glass membrane when opposite sides of the membrane are in contact with solutions containing different concentrations of H3O+. This discovery led to the development of the glass pH electrode in 1909. Other types of membranes also yield useful potentials. Kolthoff and Sanders, for example, showed in 1937 that pellets made from AgCl could be used to determine the concentration of Ag+. Electrodes based on membrane potentials are called ion-selective electrodes, and their continued development has extended potentiometry to a diverse array of analytes. [Pg.465]

Redox Electrodes Electrodes of the first and second kind develop a potential as the result of a redox reaction in which the metallic electrode undergoes a change in its oxidation state. Metallic electrodes also can serve simply as a source of, or a sink for, electrons in other redox reactions. Such electrodes are called redox electrodes. The Pt cathode in Example 11.1 is an example of a redox electrode because its potential is determined by the concentrations of Ee + and Ee + in the indicator half-cell. Note that the potential of a redox electrode generally responds to the concentration of more than one ion, limiting their usefulness for direct potentiometry. [Pg.475]

If metallic electrodes were the only useful class of indicator electrodes, potentiometry would be of limited applicability. The discovery, in 1906, that a thin glass membrane develops a potential, called a membrane potential, when opposite sides of the membrane are in contact with solutions of different pH led to the eventual development of a whole new class of indicator electrodes called ion-selective electrodes (ISEs). following the discovery of the glass pH electrode, ion-selective electrodes have been developed for a wide range of ions. Membrane electrodes also have been developed that respond to the concentration of molecular analytes by using a chemical reaction to generate an ion that can be monitored with an ion-selective electrode. The development of new membrane electrodes continues to be an active area of research. [Pg.475]

The potentiometry sensor (ion-selective electrode) controls application for determination of polymeric surface-active substances now gets the increasing value. Potentiometry sensor controls are actively used due to simple instmment registration, a wide range of determined concentrations, and opportunity of continuous substances contents definition. That less, the ionometry application for the cation polymeric SAS analysis in a solution is limited by complexity of polycation charge determination and ion-exchanger synthesis. [Pg.108]

A variety of other techniques have been used to investigate ion transport in conducting polymers. The concentrations of ions in the polymer or the solution phase have been monitored by a variety of in situ and ex situ techniques,8 such as radiotracer studies,188 X-ray photoelectron spectroscopy (XPS),189 potentiometry,154 and Rutherford backscatter-ing.190 The probe-beam deflection method, in which changes in the density of the solution close to the polymer surface are monitored, provides valuable data on transient ion transport.191 Rotating-disk voltammetry, using an electroactive probe ion, provides very direct and reliable data, but its utility is very limited.156,19 193 Scanning electrochemical microscopy has also been used.194... [Pg.580]

These results are plausible since according to Sand a two-fold concentration of a component yields a four-fold transition time. Now, these features show, in contrast to the net separation and pure additivity of polarographic waves and their diffusion-limited currents as concentration functions, that in chrono-potentiometry the transition times of components in mixtures are considerably increased by the preceding transition times of any other more reactive component, which complicates considerably the concentration evaluation of chronopotentiograms. [Pg.186]

The selectivity here is directly proportional to complex formation constants and can be estimated, once the latter are known. Several methods are now available for determination of the complex formation constants and stoichiometry factors in solvent polymeric membranes, and probably the most elegant one is the so-called sandwich membrane method [31], Two membrane segments of different known compositions are placed into contact, which leads to a concentration polarized sensing membrane, which is measured by means of potentiometry. The power of this method is not limited to complex formation studies, but also allows one to quantify ion pairing, diffusion, and coextraction processes as well as estimation of ionic membrane impurity concentrations. [Pg.106]

Some of the typical parameters or properties utilized for NIR detection are potentiometry,(5) absorbance,(52 54) refractometry/18,19) or fluorescence spectros-copy.(55) Of these, has proven to be the most valuable detection method in fiber optic applications/2,56) In standard spectroscopic techniques, the detection limits of a method are greatly determined by the instrument and by the chemical method used for the analysis. However, in OFCD research the detection limits are governed by a series of other variables including the dye, the matrix, and the instrument. By optimizing these variables, low detection limits can be obtained with this technique. [Pg.191]

The fluoride ion selective electrode is the most popular means of fluoride ion determination after sample destruction by any method but it does have limitations. It can be used either directly to measure the fluoride potential6 or as an end-point detector in a potentiometric titration with a lanthanum(l II) reagent as titrant.4,7 Problems can be experienced with potential drift in direct potentiometry, especially at low fluoride ion concentrations. Titration methods often yield sluggish end points unless water miscible solvents are used to decrease solubilities and increase potentia 1 breaks and sulfate and phosphate can interfere. End-point determination can be facilitated by using a computerized Gran plotting procedure.4... [Pg.28]

Rotating Electrode Potentiometry Lowering the Detection Limit of Nonequilibrium Polylon-Sensitlve Membrane Electrodes" Anal. Chem. 2001, 73,332.]... [Pg.298]

A. Radu, M. Telting-Diaz, and E. Bakker, Rotating Disk Potentiometry for Inner Solution Optimization of Low-Detection-Limit Ion-Selective Electrodes, Anal. Chem. 2003, 75, 6922. [Pg.673]

The simulation of other electrochemical experiments will require different electrode boundary conditions. The simulation of potential-step Nernstian behavior will require that the ratio of reactant and product concentrations at the electrode surface be a fixed function of electrode potential. In the simulation of voltammetry, this ratio is no longer fixed it is a function of time. Chrono-potentiometry may be simulated by fixing the slope of the concentration profile in the vicinity of the electrode surface according to the magnitude of the constant current passed. These other techniques are discussed later a model for diffusion-limited semi-infinite linear diffusion is developed immediately. [Pg.589]

A CE determination of fluoride in rain water was compared with IC and ISE potentiometry the IC response was related to the total concentration, whereas CE and ISE responded to free fluoride [50]. The fluoride concentrations obtained by CE and ISE were systematically lower than those obtained by IC due to the fluoride complexation with aluminium. The detection limits for IC and ISE were similar (0.2 and 0.3 pmol/l) and somewhat lower than those for CE (0.6 xmol/l). CE was evaluated as an alternative method to the EPA ion chromatographic method for the determination of anions in water and a better resolution and a shorter analysis time were found for CE [51]. [Pg.1196]

Laser-induced fluorescence (LIF) has also been utilized as a highly sensitive detection principle for CE [48-51]. However, while the LIF detector is now able to achieve zeptomole (10 21) detection limits, conventional derivatization techniques are inefficient at these exceptional levels [52]. Also, CE has successfully been coupled with mass spectrometry (MS) [53], nuclear magnetic resonance (NMR) [54, 55], near-infrared fluorescence (NIRF) [56, 57], radiometric [58], flame photometric [59], absorption imaging [60], and electrochemical (conductivity, amperometric, and potentiometry) [61-63] detectors. A general overview of the main detection methods is shown is Table 1 [64]. [Pg.434]

To apply equation (3) for calculation of the equilibrium constant K waves Ia and ic must both be limited by diffusion. To prove this the current is measured under conditions when it is 15% or less of the total limiting current and its dependence on the mercury pressure is followed. A diffusion current must, under these conditions, show a linear dependence on the square root of the height of the mercury column. Whenever possible, polarographic dissociation curves should be compared with data on dissociation obtained by other methods, e.g. potentiometry, N.M.R. or spectrophotometry. In the latter case it is important to show that the species responsible for a given polarographic wave is identical with that responsible for the observed absorption peak. [Pg.6]

An important advantage of these techniques is that the measurements of electrical potential can be very accurate, which allows monitoring until almost complete conversion, or until equilibrium in a reversible process. In fact, potentiometry is extremely powerful for obtaining equilibrium constants [25]. However, there are also restrictions and limitations (a) the solution must be conducting (b) the response time of the electrode can be relatively long, so there is a limit to the speed of a reaction which can be monitored and (c) there can be appreciable interference from impurities, or intermediates and products. [Pg.74]

For chemists, the second important application of electrochemistry (beyond potentiometry) is the measurement of species-specific [e.g., iron(III) and iron(II)] concentrations. This is accomplished by an experiment in which the electrolysis current for a specific species is independent of applied potential (within narrow limits) and controlled by mass transfer across a concentration gradient, such that it is directly proportional to concentration (/ = kC). Although the contemporary methodology of choice is cyclic voltammetry, the foundation for all voltammetric techniques is polarography (discovered in 1922 by Professor Jaroslov Heyrovsky awarded the Nobel Prize for Chemistry in 1959). Hence, we have adopted a historical approach with a recognition that cyclic voltammetry will be the primary methodology for most chemists. [Pg.53]

As indicated at the beginning of this chapter, the methodology of chrono-potentiometry is straightforward. Some care is necessary to ensure that the electrode configuration and placement are such as to cause the electrolysis to be limited by semiinfinite linear diifusion. Chapter 5 indicates a number of indicator-electrode designs that are appropriate for such performance. As in... [Pg.167]

The oxidation of propylene oxide on porous polycrystalline Ag films supported on stabilized zirconia was studied in a CSTR at temperatures between 240 and 400°C and atmospheric total pressure. The technique of solid electrolyte potentiometry (SEP) was used to monitor the chemical potential of oxygen adsorbed on the catalyst surface. The steady state kinetic and potentiometric results are consistent with a Langmuir-Hinshelwood mechanism. However over a wide range of temperature and gaseous composition both the reaction rate and the surface oxygen activity were found to exhibit self-sustained isothermal oscillations. The limit cycles can be understood assuming that adsorbed propylene oxide undergoes both oxidation to CO2 and H2O as well as conversion to an adsorbed polymeric residue. A dynamic model based on the above assumption explains qualitatively the experimental observations. [Pg.165]

Semipermeable membrane electrode membrane electrode with membrane permeable only for limited type of ionic species. Its potential is equal to the -> Donnan potential. The electrode with the membrane permeable only for one type of ionic species is called -> ion selective electrode used in -> potentiometry. [Pg.422]


See other pages where Potentiometry limits is mentioned: [Pg.93]    [Pg.399]    [Pg.744]    [Pg.251]    [Pg.272]    [Pg.272]    [Pg.669]    [Pg.152]    [Pg.164]    [Pg.434]    [Pg.627]    [Pg.137]    [Pg.148]    [Pg.57]    [Pg.2]    [Pg.91]    [Pg.155]    [Pg.279]    [Pg.133]    [Pg.773]    [Pg.137]    [Pg.45]    [Pg.53]    [Pg.73]    [Pg.196]    [Pg.196]    [Pg.124]    [Pg.7]    [Pg.41]    [Pg.122]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Potentiometry

© 2024 chempedia.info